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Foreword

The International Planning Competition (IPC) is organized in the context of the International
Conference on Planning and Scheduling (ICAPS). It empirically evaluates state-of-the-art planning
systems on a number of benchmark problems. The goals of the IPC are to promote planning re-
search, highlight challenges in the planning community and provide new and interesting problems
as benchmarks for future research. In 2018, different tracks were organized more or less indepen-
dently by different groups of organizers. This booklet describes the planners that participated in
the classical tracks of the IPC 2018. This is the 9th IPC containing classical tracks making it the
oldest part of IPC.

There were four classical tracks in total: in the optimal track planners had to find a provably
optimal solution; in the satisficing track the goal was to find a (not necessarily optimal) plan with
high quality; in the agile track only the time to find any plan was counted; and in the cost-bounded
track planners had to find a plan with a cost not exceeding a given bound. A multi-core track was
announced but unfortunately had to be canceled because only two teams registered for it. In parallel
to the classical tracks there were also temporal and probabilistic tracks organized separately.

Across the four classical tracks, 35 planners were submitted which includes variants of some planners.
Most of these planners participated in more than one track summing up to 73 entries in total. We
are happy to have had a large number of 21 teams with 38 authors coming from 17 affiliations across
12 different countries.

In previous years, IPCs have driven research by using new features in the benchmarks used for
evaluation and requiring participants to support them to some degree. This year, we decided to
not add any new mandatory features but to push for better support of existing features. Our main
focus was on conditional effects and domains that are hard to ground (e.g., because they have
action schemas with many parameters). Both are features that often occur in domains that are not
written by planning experts but planners only support them to a limited degree so far.

There were many submissions of domain ideas and with great help from the domain submitters
we were able to include eight of them in the final set used for evaluation. We created three more
domains for a total of eleven. The optimal, satisficing, and agile tracks all used ten of these, while
the cost-bounded tracks used eight (leaving out domains not suited for a track).

This year planners were submitted as software containers using singularity (singularity.lbl.gov).
We hope that this step will increase the reproducibility of results and simplify reusing the planners
for future experiments. The competition was run on the sciCORE (http://scicore.unibas.ch/)
scientific computing center at University of Basel. Each planner was run on a single core of an
Intel Xeon Silver 4114 processor with no load on the other cores. The results were analyzed with
Downward Lab (https://lab.readthedocs.io).

The competition results were announced at ICAPS, in June 2018, in Delft (Netherlands). Results,
planners, log files, and detailed information on all tracks are available on our homepage:

https://ipc2018-classical.bitbucket.io/

Álvaro Torralba, Florian Pommerening
June 2018
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Alien: Return of Alien Technology to Classical Planning

Masataro Asai
guicho2.71828α©gmail.com

Abstract

Recently, a modern Classical Planning framework Fast
Downward (Helmert 2006) is the go-to framework in the
planning community. Despite its huge contribution, the
framework have several design problems: (1) code quality
and extensibility, (2) preprocessing speed, (3) low-level per-
formance. In this IPC submission, we present a new classi-
cal planning framework, Alien, with emphasis on preprocess-
ing and low-level performance. While we do not believe this
library will get as popular as Fast Downward (the only ex-
pected users of this framework are us), we believe some of the
design choices might influence future planners. Tl;dr: C/C++
is too slow.

1 Introduction
In recent years (post-2000), classical planning solvers are
written in languages such as C or C++, assuming that the
resulting binary automatically achieves almost-optimal low-
level performance thanks to the compiler improvement. This
is not true, mainly due to the limitations in these lan-
guages that they cannot optimize the low-level instruction
sequences for the problem instance at hand – They apply the
same, fixed instruction sequence that iterates/recurses over
data structures, to different data. This behavior is similar to
a byte-code interpreter, which is reading and interpreting a
data structure loaded on main memory instead of directly
running the assembly instructions that achieve the same be-
havior. The approach is slower than the native compilation
even if the interpreter itself is compiled by GCC or Clang.

The choice of these languages also carries a significant
burden on the extensibility & composability of the resulting
solver with external services such as web servers, debug-
gers, visualizers etc. While it is possible to connect a plan-
ner to these systems, it is typically done via a coarse-grained
API such as command line options and standard I/O, and
is not easily “pluggable”: It does not allow users to attach
knobs at every corners, unless a significant modification is
performed on the source code. While such flexibility might
be achieved by interpreted programming languages such as
Ruby or Python, we cannot sacrifice the low-level perfor-
mance for a computationally intensive task like Classical
Planning. To achieve flexibility and speed, one should use
a flexible compiled language.

Two examples of such lack of extensibility are the adap-
tation of Fast Downward for parallel processing (Jinnai and
Fukunaga 2017) or external memory search (Lin and Fuku-
naga 2018). In the former case, they had to implement
process-level parallelism via MPI because the open/closed
lists in Fast Downward are assuming single-threaded exe-
cution. In the latter case, not only the state database needs
to be rewritten, but also the interface to heuristic functions
and other pieces should be modified because they are tightly
coupled to the state database.

Finally, Fast Downward uses python-based grounding
process (PDDL-SAS+ translation) which becomes slow on
certain instances e.g. very large instances with repetitive
structures (Asai and Fukunaga 2014) or a problem instance
automatically generated from images using neural networks
(Asai and Fukunaga 2018). To even start solving the prob-
lem one should improve the performance of grounding pro-
cesses for actions and state variables.

Figure 1: A Lisp alien. “To most programmers, Lisp seems
like an entirely alien language at first- (...) this strangeness
is not an arbitrary obstacle, but a necessary adjustment that
imparts great power to programmers that would otherwise
be unattainable. The alien Lisp mascot and quirky logo de-
signs are designed to accentuate the awesome (and, to most
people, alien) power that Lisp languages have- At the same
time, they show how fun Lisp programming tends to be and
that Lisp has wide appeal far beyond the stuffy academia it
is sometimes wrongly associated with.” (Barski 2007)

We tackle these issues by using ANSI Common Lisp
programming language (Fig. 1) combined with B-Prolog
(Zhou 2012), a modern high-performance Prolog solver with
tabling predicates (Van Gelder, Ross, and Schlipf 1991) for
preprocessing / grounding process. Common Lisp addresses
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the first two issues of low-level performance and extensibil-
ity. B-Prolog addresses the third issue by its heavily opti-
mized implementation.

2 PDDL Preprocessing
2.1 Prolog the Language
Prolog is a logic programming language that describes a pro-
gram with a set of horn clauses. In Prolog, a program con-
sists of rules and facts, both described in first-order logic
terms. A rule looks like <Head> :- <Body>., where
Head is a term, and Body consists of several subgoal terms
<sg>1, <sg>2 . . .. A fact is a rule without body, and can
be written as <Head>..

A term can be a number, an atom (e.g. cat), a vari-
able (e.g. X) including wildcards (_), or a compound
form predicate(arg1, arg2...) where each argi

is also a term.
To achieve a subgoal predicate(arg1,

arg2...), Prolog interpreter performs a process called
Unification. It first looks for a rule/fact in the program
whose head has the same predicate and has the same
instantiated arguments (arguments that are numbers/atoms)
as the subgoal. Next, it assigns a value to each unassigned
variable, using existing assignments as much as possible,
while it also enumerates all combinations when no existing
assignment is available. For each such combination of
value assignment, it tries to achieve every subgoals, hence
the Prolog interpreter performs a depth-first search on the
subgoals. When there is no matching rule in the program,
it backtracks and tries another combination of assignments.
There is a top-level clause called initialization and
Prolog tries to achieve this on launch.

Tabling While the default depth-first search method is
good for most querying purposes, it has a limitation that
sometimes the program does not halt, or good perfor-
mance is not achieved due to the many re-evaluation of the
same subgoal. To address this issue, an alternative seman-
tics called Well-Founded Semantics (Van Gelder, Ross, and
Schlipf 1991) was proposed, in which the program is al-
lowed to use tabled predicates. When the program declares a
certain predicate to be tabled, results of achieving compound
terms of the same predicate are memoized into a table and it
succeeds without recursion when the same subgoal is tested
next time.

A related subset of Prolog called Datalog is a much
smaller subset. Instead, Prolog + Tabling is an extension of
Prolog with Datalog-like efficiency.

High Performance Modern Prolog Prolog language is
standardized as ISO-Prolog (Covington 1993) and many
Prolog implementations (commercial / open sourced) with
various focuses are available. Prolog interpreters typically
process a program with a virtual machine called Warren’s
Abstract Machines (Warren 1985, WAM), which is heavily
tuned for optimized execution of unification. While the most
popular implementation is SWI-Prolog (Wielemaker et al.
2012), it’s focus is the large feature set rather than the perfor-
mance. In our project, we use B-Prolog (Zhou 2012) which

has shown the best performance in our internal testing. B-
Prolog is an originally commercial implementation which
is now in public domain, and it supports tabled predicates.
Typically, B-Prolog is faster than SWI by around x2, but for
some corner cases by up to x120 faster (transport agl14 p01,
SWI:242s, BProlog:4.4s, translate.py: 13s w/o invariant syn-
thesis).

2.2 Preprocessing
In our planner, we reused the formal definitions described in
Helmert (2009) for grounding facts/actions. We use binary
formalizm instead of SAS formalism for simplicity, and thus
does not perform mutex invariant synthesis, while this is fu-
ture work.

The program is entirely written in Common Lisp (CL).
After opening a PDDL input file, a parser written in CL
parses the PDDL input, then programatically constructs a
Prolog program using cl-prolog2 (Asai 2017) library
written by the author. The library makes it easy to use Pro-
log as a domain-specific solver by transpiling S-expressions
(the same format used in PDDL: parentheses and symbols)
into Prolog expressions, writes them to a file, runs a Prolog
interpreter, then extracts the output.

3 Search Component
In this section, we describe the search component and the
language used to implement the program, ANSI Common
Lisp. In the search component, we generally follow the ad-
vice from Burns et al. (2012).

3.1 ANSI Common Lisp
ANSI Common Lisp (ANSI CL) is a specification of Com-
mon Lisp language, similar to C++14 or C++17. Just as
C++14 has various implementations (GCC / Clang / MSVC),
so does CL (SBCL / CCL / ECL / ABCL). Just as C++14 does
not forbid implementing a C++ interpreter, ANSI CL does
not specify if it is interpreted or compiled. Due to historical
mishaps, many misunderstand that lisp implementations
are interpreters; In fact most CL implementations com-
pile programs to native instruction sequences. Alien uses
Steel Bank Common Lisp (sbcl), the current fastest Com-
mon Lisp compiler on x86_64 environment.

Objects in Common Lisp are strongly typed and functions
can be optionally statically typed via declaration. Typed
functions typically compiles to a native code that is as good
as code compiled by GCC. Similar to many other languages,
or like auto keyword in C++, there is type inference mech-
anism and programmers should declare only a subset of
variables. As typing is optional, programmers can choose
to neglect it for non-performance-sensitive code, sacrificing
speed for agile development.

A notable feature of ANSI CL is the inclusion of
compile function in the standard library. That is, program-
mers are allowed to compile a new code in runtime, which
allows us to generate code specifically optimized for the
given problem instance / successor function / state represen-
tation / heuristic function.
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Compilation of Common Lisp Programs Compilation
of a Common Lisp program is quite different from those of
traditional programming languages, and it allows flexibility
and ultimate low-level performance.

In traditional programming languages, initially (1) there
is a textual representation of the program in a file, (2) the
compiler emits a compiled binary for a file, (3) the linker
links the object files to produce an executable, (4) which is
loaded onto main memory and the CPU runs the instruc-
tions. While it is possible to compile an additional source
code while the program is running and load the object file
from the running program, the process would be quite com-
plicated. Thus, most programs are compiled off-line and is
considered a fixed entity during execution.

Common Lisp has several differences from this paradigm.
First, it is inherently interactive: There is a process that is al-
ways running in the background, and the compilation, link-
ing, execution are all performed by this process.

Secondly, the compiler is separated into two controllable
phases. A textual program is first parsed into a nested single-
linked list structure, because the entire program is written in
S-expression (Fig. 2). The compiler then compiles the linked
list into an instruction sequence. Due to this separation, pro-
grammers can systematically create a linked-list represent-
ing a certain program and compile/execute it.

Common Lisp:
(defun factorial (x)

(declare ((unsigned-byte 64) x))
(if (= 0 x)

1
(* x (factorial (- x 1)))))

Equivalent C:
uint factorial(uint x){

if (0 == x){
return 1;

}else{
return x * factorial(1-x);

}
}

Figure 2: Comparison of factorial implementation with
Common Lisp and C.

3.2 Escaping GC for Close List
Common Lisp programs uses Garbage Collection (GC) for
memory management as its inherently interactive nature al-
lows the lifetime of certain objects to be unknown. How-
ever, GC is an expensive process: It should sweep over the
entire memory, collecting and freeing the unreferenced ob-
jects. While it is acceptable to have many dead objects in
performance-insensitive code such as preprocessing, object
allocation inside a core inner loop is problematic, as it in-
vokes GC and slows the entire program execution.

To completely avoid the problem of GC in inner loop, we
store Close List in a large, separate memory array indepen-
dently allocated by malloc and not managed by Lisp GC.
This design choice is acceptable because in forward state-

space search, close-list and other data structures are persis-
tent, and need to be freed only when the program exits.

3.3 States and Per State Information
Memory layout of the Close List is determined after prepro-
cessing and command line option parsing.

In Alien, states have binary representation. Unlike SAS
formalism, the representation itself is not densely com-
pressed. However, bit packing performed by FD is trivial in
our case. Also, when a state has N propositional variables, it
consumes exactly N bits in Close List, with a slight overhead
of shifting some bits after reading the data from the array.

Since the layout is computed after the option pars-
ing, per-state information such as heuristic cache or g-
value can be placed right after each packed state, i.e.
array-of-structures. This improves memory locality com-
pared to Fast Downward, which has a separate array
for each PerStateInformation<T>, i.e. structure-of-
arrays (SoA) representation.

The number of bits consumed for such data is also opti-
mized. For example, the maximum value of FF heuristics is
bounded by the number of operators (maximum depth of an
RPG), thus the cache takes exactly dlog |O|e bits where |O|
is the number of operators.

3.4 Successor Generator as Assembly Sequence
Fast Downward uses Successor Generator (SG) to represent
a successor function (Fig. 3). SG is a decision-tree whose
internal node represents a precondition of an action and each
node has multiple outgoing edges, one for each value in the
domain of SAS variable, as well as a single don’t-care edge.
When generating a successor, the program recurses over this
data structure, following the correct branch depending on the
value of the variable in the current state, as well as following
the don’t care edge afterwards.

v5=0

v5=1

v5=*

(1) Successor Generator node (2) Equivalent program

(if (= v5 0)
    (progn
     (if (= v8 0)...)
     (if ...)))
(if (= v5 1)
    ...)
(progn
  (if (= v7 0) ...)
  (if (= v7 1) ...))

v8

v10

v7
(3) Compilation result

L632: MOV ECX, [RAX+5]
      SHR ECX, 9
      AND ECX, 2
      CMP RCX, 2
      JEQ L648
L633: ...

Figure 3: Successor Generator and its corresponding pro-
gram and the compiled binary

While this achieves a better performance compared to a
naive method which checks applicability of an action one by
one, Alien improves it by converting a SG into a nested if-
else program that is subsequently compiled into an X86_64
instruction sequence.

This approach has two advantages over the recursion to
a SG. First, it creates a function that is loaded onto L1
instruction cache rather than a L1 data cache, minimiz-
ing the data cache usage. Second, it enables every built-in
CPU features including pipelining, out-of-order execution
and branch prediction. Thirdly, when building a program
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for a SG, it could merge several preconditions into a sin-
gle if statement which compiles to a single word-size test
op, when their indices are within a 64bit boundary (Fig. 4).

if v[2] == 1
   if v[4] == 1
      if v[5] == 1
           ...

if (0B0010110.. && !v[0:63]) == 0

64bit word

↓

Figure 4: Packing nearby conditions into a single condition.

One issue with this compilation is that it takes time when
the SG is large, and that the function may not fit in instruc-
tion cache. In the internal testing, compilation time increases
quadratically to the number of branches. Therefore, we set
a limit on the number of compiled decision nodes, and from
the tip node that is not compiled, we process the remaining
variables with a standard SG. The limit is heuristically deter-
mined to be 1000 nodes, which roughly keeps the function
size within 20kB. For reference, Intel Haswell processor has
32kB of L1 instruction cache. Axiom evaluators and condi-
tional effects are compiled similarly.

3.5 Heuristics and Other Search Code
After preprocessing, Alien recompiles the heuristic func-
tions and search algorithms (e.g. eager best first search) be-
ing used. This optimizes the program by inlining the infor-
mation such as the state size / number of operators.

We did not have time to implement various heuristic func-
tions, and we have only FF (Hoffmann and Nebel 2001)
heuristics based on RPG, as well as the novelty metric
(Lipovetzky 2017). The planner which entered the compe-
tition is almost the same as BWFS presented in (Lipovetzky
2017).

3.6 Low-Level Performance
In our preliminary testing with blind search, Alien showed
a better low-level performance compared to Fast Downward
(Table 1).

In IPC2014 Agile track setting, Alien with eager FF
heuristics (54 instances solved) slightly outperforms Fast
Downward with FF heuristics with eager evaluation (44 in-
stances solved).

problem Fast Downward Alien
sokoban p01 180095 307500

cavediving p01 255159 410255
citycar p01 178950 200229

parkprinter p01 264629 273645

Table 1: Node generation per second for Fast Downward and
Alien on four easy problem instances.

4 Conclusion
We present Alien planner, which contains a new approach to
write a preprocessor and the base search algorithm. While

the framework is still immature, there are some notable de-
sign decisions that may also influence future planners. Fu-
ture work includes the implementation of more heuristic
functions, invariant synthesis, and connection to external
services such as web services, online notebook or machine
learning.
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Abstract

The planners FREELUNCH-DOUBLY-RELAXED and
FREELUNCH-MADAGASCAR consist of three compo-
nents: a) an encoding of the planning problem to SAT
(FREELUNCH, which also tries to solve the instance
before passing it on, or MADAGASCAR) b) the driver
for solving the SAT problems incrementally (INCPLAN)
and c) a modern incremental SAT solver with inprocess-
ing (LINGELING).

Introduction
The general idea of our planners is to encode the planing
problem into SAT and use an of-the-shelf SAT solver to
solve it. However, it turns out that lots of problems can al-
ready be solved with a simple heuristic search, which is done
in FREELUNCH-DOUBLY-RELAXED before passing it to the
SAT solver.

To transform the planning problems into SAT, we use
MADAGASCAR (Rintanen, Heljanko, and Niemelä 2006)
with the ∃ encoding in FREELUNCH-MADAGASCAR and in
FREELUNCH-DOUBLY-RELAXED we use the Selective en-
coding (Balyo and Barták 2015) which is a heuristic selector
that chooses either the Relaxed Relaxed Exist-Step (RRES)
encoding (Balyo 2013) or the Reinforced encoding (Balyo,
Barták, and Trunda 2015).

The double ended incremental encoding (Gocht and Ba-
lyo 2017) is used by the tool INCPLAN to call the SAT solver
LINGELING (Biere 2013) incrementally with inprocessing.

Preliminary Definitions
Incremental SAT Solving
A clause is a disjunction (OR) of literals, a literal is a
Boolean variable or its negation and a Boolean variable
is variable with two possible values (True and False). A
conjunctive normal form (CNF) formula is a conjunction
(AND) of clauses. A CNF formula is satisfiable if there is
an assignment of truth values to its variables that satisfies at
least one literal in each clause of the formula.

The idea of incremental SAT solving is to utilize the effort
already spent on a formula to solve a slightly changed but

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

similar formula. The assumption based interface (Eén and
Sörensson 2003) has two methods. One adds a clause C and
the other solves the formula with additional assumptions in
form of a set of literals A:

add(C)

solve(assumptions = A)

Note that we will add arbitrary formulas, but they will
be transformable to CNF trivially. The method solve deter-
mines the satisfiability of the conjunction of all previously
added clauses under the condition that all literals in A are
true. Note that it is only possible to extend the formula, not
to remove parts of the formula. However, this is no restric-
tion. If we want to add a clause C we plan to remove later
we add it with an activation literal: Instead of adding C we
add (a ∨ C). If the clause needs to be active, ¬a is added
to the set of assumptions for the solve step. Otherwise, no
assumption is added and the solver can always satisfy the
clause by assigning True to a.

SAT-Based Planning
A planning problem is to find a plan – a sequence of actions,
that transforms the initial state into a goal state. The basic
idea of solving planning as SAT (Kautz and Selman 1992)
is to express whether a plan of length i exists as a Boolean
formula Fi such that if Fi is satisfiable then there is a plan
of length i. Additionally, a valid plan must be constructible
from a satisfying assignment of Fi. To find a plan the plan
encodings F0, F1, . . . are checked until the first satisfiable
formula is found, which is called sequential scheduling and
used in our planners. There also exist more advanced algo-
rithms to schedule the solving of plan encodings with dif-
ferent makespans (Rintanen, Heljanko, and Niemelä 2006),
however these approaches seem to be less beneficial, when
incremental SAT solving is used.

Representation of the Plan Encoding
To apply incremental SAT solving it is necessary to break the
plan encoding down to its essential parts. While an arbitrary
encoding does not necessarily have this structure, all existing
encodings already use this structure or are easily expressed
within the presented terms.

5



t0 = I tΩ = G

t1 tΩ−1

t2 tΩ−2

t3 tΩ−3

T (t0, t1)
{T (t1, t2)

{T (t2, t3)

{

¬a0∨L(t0,tΩ)︷ ︸︸ ︷

¬a2∨L(t1,tΩ−1)︷ ︸︸ ︷

¬a4∨L(t2,tΩ−2)︷ ︸︸ ︷

¬a6∨L(t3,tΩ−3)︷ ︸︸ ︷

}
T (tΩ−1, tΩ)

}
T (tΩ−2, tΩ−1)

}
T (tΩ−3, tΩ−2)

step 0 step 2 step 4 step 6

Figure 1: Visualization of the double ended incremental en-
coding. For clear arrangement, link clauses are only shown
for every other step. The colors show which clauses are new
in the particular step. All clauses from previous steps are
present as well. (Gocht 2017)

The variables of the plan encoding Fi are divided into i+1
groups called time points with the same number of vari-
ables N , vk@j represents variable k at time point tj . The
clauses of Fi are divided into three groups:

• initial clauses I: satisfied in the initial state t0

• goal clauses G: satisfied in the goal state ti

• transition clauses T : satisfied at each pair of consecutive
time points (t0t1, t1t2, . . . , ti−1ti)

The clauses of I,G operate on the variables of one time
point and T operates on the variables of two time points.
T (j, k) indicates that the transition clauses are applied from
time point j to time point k and similarly for I,G. The plan
encoding Fi for makespan i can be constructed from these
clause sets:

Fi = I(0) ∧
(

i−1∧
k=0
T (k, k + 1)

)
∧ G(i)

Double Ended Incremental Encoding
Let us also introduce the double ended incremental encoding
(Gocht and Balyo 2017) as described in (Gocht 2017).

With non-incremental SAT solving the plan encodings are
newly generated for each makespan and the SAT solver does
not learn anything from previous attempts. With an incre-
mental SAT solver it is possible to append a new time point
in each step. The idea of the double ended incremental en-
coding is to add new states between initial state and goal
state, such that clauses can be learned from both. This can
be understood as having two stacks: One stack contains the
time point with initial clauses at the bottom, the other con-
tains the time point with the goal clauses at the bottom.
New time points are pushed alternating to both stacks. The
time points at the top of both stacks are linked together with
link clauses, such that they represent the same time point,
i.e. each variable has the same value in both time points:
L(j, k) := ∧Nl=1vl@j ⇔ vl@k. Activation literals ensure

that only the latest link is active.

step (0) :

add
(
I(0) ∧ G′(Ω) ∧ [¬a0 ∨ L(0,Ω)]

)

solve (assumptions = {a0})
step (2k + 1) : add tk+1

add
(
T ′(k, k + 1) ∧ [¬a2k+1 ∨ L(k + 1,Ω− k)]

)

solve (assumptions = {a2k+1})
step (2k) : add tΩ−k

add
(
T ′(Ω− k,Ω− k + 1) ∧ [¬a2k ∨ L(k,Ω− k)]

)

solve (assumptions = {a2k})
Note that Ω is neither a precomputed number nor a fixed

upper bound but a symbol which always represents the last
time point and Ω− k is the kth time point before the last. In
step zero there is no transition between the first time point
0 and the last time point Ω. Therefore, both time points are
the same. In step one there is one transition between the first
and the last time point. In step two there are two transitions
in between and so on. This is visualized in Figure 1.

Implementation
To transform the planning problems into the SAT encod-
ing, i.e. into initial clauses I, transition clauses T and
goal clauses G, we use MADAGASCAR (Rintanen, Heljanko,
and Niemelä 2006) with the ∃ encoding in FREELUNCH-
MADAGASCAR.

In FREELUNCH-DOUBLY-RELAXED we use the Selective
encoding (Balyo and Barták 2015) which is a heuristic se-
lector that chooses either the Relaxed Relaxed Exist-Step
(RRES) encoding (Balyo 2013) or the Reinforced encod-
ing (Balyo, Barták, and Trunda 2015) based on the relative
number of state variable transitions in the problem descrip-
tion. For more details on the selection rule see (Balyo and
Barták 2015).

The tool INCPLAN takes care of the double ended incre-
mental encoding and the interaction with the state-of-the-
art incremental SAT solver Lingeling (Biere 2013), which
is used to solve the formulas. An overview of this general
system is shown in Figure 2.

Inprocessing
The used SAT solver Lingeling (Biere 2013) does support
inprocessing. To prevent the removal of variables which are
necessary to extend the formula we tell the solver to keep
all variables which are contained in the link clause, which is
active in the current solve step.

Pre-solving with Heuristic Forward Search
In FREELUNCH-DOUBLY-RELAXED we have an initial
heuristic search phase. It is run for the first 5 minutes in the
Satisfycing Track and 2 minutes in the Agile Track.

Starting with the initial state, the algorithm computes all
the applicable actions in the current state that lead to a not
yet visited state. For each of these actions a heuristic value is
computed representing its supposed usefulness. The action
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Figure 2: System Overview

with the highest value is selected and applied on the current
state. If we get to a state, that each applicable action leads to
an already visited state or there is no applicable action, then
we backtrack to the previous state.

The heuristic function of action usefulness is very simple
and greedy. An action starts with a score of 0. If an effect of
the action sets a variable to a goal value while in the current
state it has a different value, then the score of the action is
increased by 1. On the other hand, if an effect changes the
value of a variable which already has a goal value, then the
score is decreased by 1. Finally, to break the ties, the score
is multiplied by 10 and a random value between 0 and 9 is
added to it.

Despite its simplicity, this algorithm can solve around one
half of the IPC 2011 benchmark problems very quickly. The
downside of the algorithm is that it finds extremely long
plans full of redundant actions. For example, for domains
such as Elevators and Transport the found plans contain
hundreds of thousands of actions while plans found by Fast
Downward (Helmert 2006) only have a few hundred actions.

Fortunately, these extremely long plans can be easily re-
duced to reasonable lengths using post planning optimiza-
tion techniques. Even the simplest such techniques per-
form very well on these plans due to their severe redun-
dancy. The post planning optimization algorithm we used
is Action Elimination (AE) (Nakhost and Müller 2010;
Fink and Yang 1992). AE is a polynomial (O(|P |2)) heuris-
tic algorithm capable of removing redundant (unnecessary)
actions from plans. It is not guaranteed to remove all redun-
dant actions (which is an NP-complete problem (Fink and
Yang 1992)) and it cannot add/replace actions.

In some cases the plan is very long even after the post
planning optimization. The plan may be so long that the
widely used plan validation tool val (Howey, Long, and Fox
2004) crashes on it.

Conclusion
In this paper we described the set of tools and the tool-chains
we submitted to the IPC 2018 under the name Freelunch. We
believe it represents the state-of-the-art in SAT based plan-
ning, and we hope it will perform well on the competition’s
benchmark problems

Post-Competition Results Commentary
Both versions of our planners performed very poorly (placed
among the bottom 7 in both Tracks), which indicates that
SAT based approaches are not very suitable for this years
benchmarks.

The FREELUNCH-DOUBLY-RELAXED planner performed
slightly better than FREELUNCH-MADAGASCAR, but this
is not due to the SAT solving part. As mentioned above,
FREELUNCH-DOUBLY-RELAXED has a pre-solving phase
where a heuristic search with a trivial heuristic is run.
This phase actually solved all the problems solved by
FREELUNCH-DOUBLY-RELAXED in both Tracks and there-
fore none of the problems was solved in the SAT solving
phase.

The heuristic search was especially successful in the
Snake domain, where it performed best among all the par-
ticipating solvers while solving all the benchmark instances.
We believe this is thanks to the high number of goal atoms
in this domain, which favors our trivial greedy heuristic.
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Abstract

This manuscript describes the IBaCoP family of planning
portfolios submitted to the International Planning Competi-
tion 2018. Our portfolios are improved versions of the plan-
ners submitted to the last IPC-2014. IBaCoP-2018 is con-
figured following a Pareto efficiency approach for selecting
planners and then giving the same execution time for the se-
lected planners. IBaCoP2-2018 decides for each problem the
sub-set of planners to use. This decision is based on predictive
models trained with domain/problems from previous IPCs.
Both 2018 portfolios compete in the sequential satisficing and
agile tracks.

Introduction
IBaCoP and IBaCoP2 are planning portfolios, which are
descried in detail in (Cenamor, de la Rosa, and Fernández
2014). We build these portfolios making a pre-selection of
good candidate planners from the set of known or available
planners. The pre-selection technique is based on a multi-
criteria approximation taking into account the time of the
first solution and the quality of the best solution, both ob-
served running planners on the training domain and prob-
lems. Then, we do planner performance modeling, for pre-
dicting the behavior of planners as a function of planning
task features. From the output of the predictions, we nar-
row the selection of planners to finally run the portfolio in a
per-instance based configuration. As in 2014, IBaCoP is the
portfolio resulting from the Pareto pre-selection of planners
(static configuration), and IBaCoP2 is the portfolio follow-
ing the whole process described before (dynamic configu-
ration). In IPC-2014, IBaCoP2 was the winner of the satis-
ficing track, while IBaCoP achieved a runner-up position in
the multi-core track (Cenamor, de la Rosa, and Fernández
2014).

Version for IPC-2018 have being built following the same
procedure. The remarkable modifications are: version (Cen-
amor, de la Rosa, and Fernández 2016; Cenamor 2017).

• Models were trained with additional features regarding
landmarks and relaxed plans (de la Rosa, Cenamor, and
Fernández 2017).

• Data from IPC-2014 was used as part of the training data

• New base planners were included as candidates

The Components of IBaCoP
We started the construction of the portfolio with all the plan-
ners from the sequential satisficing track in IPC-2011 plus
Mercury, Jasper, BFS(f) and SIW. However, there are some
planners that obtained similar results, and therefore do not
contribute to diversity in the portfolio. The chosen plan-
ners were selected by using the Pareto efficiency (Censor
1977) technique described before. The final components for
IBaCoP-2018 are:

• jasper (Xie, Müller, and Holte 2014)

• mercury (Katz and Hoffmann 2014)

• BFS(F) (Lipovetzky et al. 2014)

• SIW (Lipovetzky et al. 2014)

• FDSS-2 (Helmert et al. 2011)

• probe (Lipovetzky and Geffner 2011)

• yashp2-mt (Vidal 2011)

• lama-2011 (Richter, Westphal, and Helmert 2011)

• lamar (Olsen and Bryce 2011)

• arvand (Nakhost, Valenzano, and Xie 2011)

We trained a predictive model for a (yes/no) classifica-
tion task using Rotation Forrest (Rodriguez, Kuncheva, and
Alonso 2006). The model tries to encode whether a given
planner will solve the planning task or not. IBaCoP2-2018
is the result of querying this model and selecting the five
planners with the best “positive” prediction confidence.

Details for Sequential Agile and Satisficing
Tracks

The IBaCoP-2018 in the sequential satisficing track assigns
257 seconds to each base planner. The IBaCoP-2018 agile
planner assigns the time shown in Table 1. In addition in
this track, if one or more candidate planners fail, the system
runs lama-2011, lamar and arvand with the remaining time.
In both tracks, IBaCoP2-2018 selects five planners recom-
mended by the predictive model, and then assigns the same
time per candidate.
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Planner Time
jasper 80
mercury 30
BFS(F) 45
SIW 45
FDSS-2 45
probe 45
yashsp2-mt 20

Table 1: IBaCoP-2018 Agile. The list with the planners and
the time in seconds per candidate.

Acknowledgements
We generated sequential portfolios of existing planners to be
submitted to the International Planning Competition. Thus,
we would like to acknowledge and thank the authors of the
individual planners for their contribution and hard work. We
would also like to thank Florian and Alvaro for their help
with the compilation and bug fixing issues.

References
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2014. IBaCoP
and IBaCoP2 planner. Proceedings of the 8th International
Planning Competition (IPC-2014).
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2016. The
IBaCoP planning system: Instance-based configured portfo-
lios. J. Artif. Intell. Res. 56:657–691.
Cenamor, I. 2017. Creating Planning Portfolios with Pre-
dictive Models. Ph.D. Dissertation, Departamento de Infor-
matica, Universidad Carlos III de Madrid.
Censor, Y. 1977. Pareto optimality in multiobjective prob-
lems. Applied Mathematics and Optimization 4(1):41–59.
de la Rosa, T.; Cenamor, I.; and Fernández, F. 2017. Per-
formance modelling of planners from homogeneous prob-
lem sets. In Barbulescu, L.; Frank, J.; Mausam; and Smith,
S. F., eds., Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling, ICAPS
2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017.,
425–433. AAAI Press.
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Abstract

Saarland is the smallest – yet arguably one of the most beau-
tiful – state in Germany. And it has a lot to offer! From
rich nature, over its industrial heritage, really smart people,
to powerful planning techniques. SaarPlan combines the best
of these planning techniques to a performant portfolio, mak-
ing it the best planner in Saarland.

Introduction
Among many other things, Saarland offers a wide range of
powerful planning techniques. SaarPlan combines the best
of these techniques into a portfolio planner. Since in Saar-
land we don’t care too much about optimality, but rather
about getting things done, SaarPlan participates in the sat-
isficing, agile, and bounded-cost tracks of the competition.

Some of the ingredients of SaarPlan are also used in Dec-
Star (Gnad, Shleyfman, and Hoffmann 2018), and the OL-
CFF planner (Fickert and Hoffmann 2018). From DecStar,
SaarPlan takes the Star-topology decoupled search part, try-
ing to decompose a given planning task, if possible. In
case a good problem decomposition was detected, decou-
pled search typically performs very well. Finding a decom-
position is fast, it succeeds (or fails) quickly, so not much
time is lost in the latter case. If it fails, SaarPlan tries its
best with Grey planning, an enhancement of the red-black
planning method used by the Mercury planner (Katz and
Hoffmann 2014). The grey planning component of Saar-
Plan only considers the initial state, generates a semi-delete-
relaxed plan and attempts to repair it into a real plan. Again,
this process terminates quickly. If these two techniques do
not manage to solve the planning task, SaarPlan uses an-
other semi-delete relaxation method, the online-refined hCFF

heuristic. It uses different search methods with this heuris-
tic: an enforced hill-climbing with additional novelty prun-
ing, which is followed by a greedy best-first search (GBFS)
using the hCFF heuristic, without pruning. The GBFS part,
which is very LAMA-like (Richter and Westphal 2010) – re-
placing the fully delete-relaxed heuristic with hCFF – com-
pletes SaarPlan, making it Saarland’s best planner.

Big things always start in the small, (“Großes entsteht im-
mer im Kleinen!”) as we say in Saarland. Does this also
hold for planning? Do great planners come from the small
Saarland? The competition will answer this question.

Decoupled Search
We perform decoupled search like introduced by Gnad and
Hoffmann (2018), in its integration in the Fast Downward
planning system (Helmert 2006). We use the improved
fork and inverted-fork, as well as the incident-arcs factor-
ing methods from Gnad, Poser, and Hoffmann (2017). The
outcome of the factoring process is a partitioning F of the
variables of the planning task Π, such that |F| > 1 and
there exists FC ∈ F such that, for every action a where
V(eff(a))∩FC = ∅, there exists F ∈ F with V(eff(a)) ⊆ F
and V(pre(a)) ⊆ F ∪ FC . We then call F a star factoring,
with center factor FC and leaf factors FL := F \ {FC}.

Given a factoring F , decoupled search is performed as
follows: The search will only branch over center actions,
i. e., those actions affecting (with an effect on) a variable in
FC . Along such a path of center actions πC , for each leaf
factor FL, the search maintains a set of leaf paths, i. e., ac-
tions only affecting variables of FL, that comply with πC .
Intuitively, for a leaf path πL to comply with a center path
πC , it must be possible to embed πL into πC into an overall
action sequence π, such that π is a valid path in the projec-
tion of the planning task Π onto FC ∪ FL. A decoupled
state corresponds to an end state of such a center action se-
quence. The main advantage over standard search originates
from a decoupled state being able to represent exponentially
many explicit states, avoiding their enumeration. A decou-
pled state can “contain” many explicit states, because by in-
stantiating the center with a center action sequence, the leaf
factors are conditionally independent. Thus, the more leaves
in the factoring, the more explicit states can potentially be
represented by a single decoupled state.

We will next describe a couple of extensions that have
been developed for decoupled search and that we use in
some of our configurations.
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Symmetry Breaking in Decoupled Search
Symmetry Breaking has a long tradition in planning and
many other sub-areas of computer science (Starke 1991;
Emerson and Sistla 1996; Fox and Long 1999; Rintanen
2003; Pochter, Zohar, and Rosenschein 2011; Domshlak,
Katz, and Shleyfman 2012). We use an extension to decou-
pled search, introduced by Gnad et al. (2017), which is build
on orbit search (Domshlak, Katz, and Shleyfman 2015;
Wehrle et al. 2015). An orbit is a set of states all of which are
symmetric to each other. In the search, each state is mapped
to a canonical representative of its orbit. In case another
state from the same orbit has already been generated, a new
state can safely be pruned. Decoupled orbit search extends
this concept to decoupled states.

Decoupled Dominance Pruning
Another extension that has recently been introduced is domi-
nance pruning (Torralba et al. 2016), where decoupled states
that are dominated by other – already generated – states
can be safely discarded. We only deploy a very lightweight
pruning method, namely frontier pruning. The standard way
of performing duplicate checking in decoupled search can
already detect certain forms of dominance, in particular if
two decoupled states have the same center state and all leaf
states reachable in one state are also reachable in the other.
Frontier pruning improves this by only comparing a subset
of the reached leaf states, those that can possibly make so
far unreached leaf states available. It has originally been de-
veloped for optimal planning, but can be easily adapted to
become more efficient, when optimal solutions do not mat-
ter, by replacing the real cost of reaching a leaf state by 0, if
a state has been reached at any cost.

Additionally, we also employ a leaf simulation, originally
proposed by Torralba and Kissmann (2015), to remove irrel-
evant leaf states and leaf actions. In some domains, this can
tremendously reduce the size of the leaf state spaces.

The techniques described in this sub-section are only ap-
plicable if F is a fork factoring.

Implementation
Decoupled Search has been implemented as an extension
of Fast Downward (FD) (Helmert 2006). The implemen-
tation does not support conditional effects. By changing
the low-level state representation, many of FD’s built-in
algorithms and functionality can be used with only minor
adaptations. Of particular interest for SaarPlan are greedy
best-first search (GBFS) and the hFF heuristic (Hoffmann
and Nebel 2001). Search algorithms and heuristics can be
adapted to decoupled search using a compilation defined
by Gnad and Hoffmann (2018). We will use the follow-
ing notation to describe our techniques: the decoupled vari-
ant of search algorithm X is denoted DX. We denote fork
(inverted-fork) factorings by F (IF), and factorings gener-
ated using the incident-arcs algorithm by IA. To combine
the power of the factoring strategies, we use a portfolio
approach that runs multiple strategies and picks the one
with the maximum number of leaf factors. Further more,
we restrict the size for the per-leaf domain-size product to

ensure that the leaf state spaces are reasonably small and
do not incur a prohibitive runtime overhead when gener-
ating new decoupled states. We denote this size limit by
|FL

max| := maxFL∈FL Πv∈FL |D(v)|, where D(v) denotes
the domain of variable v. If a fork factoring is detected, we
sometimes perform frontier dominance pruning, denoted FP
and reduce the size of the leaf state spaces removing irrele-
vant transitions and states (IP). (Decoupled) orbit search is
abbreviated (D)OSS.

Grey Planning
In the spirit of partial delete-relaxation methods, like red-
black planning, which has been used in the Mercury planner
(Katz and Hoffmann 2014), SaarPlan employs an extension
thereof, grey planning (Speicher et al. 2017). In this paper,
we only give a brief summary of grey planning and refer the
reader to Speicher et al. (2017) for full details.

Partial delete-relaxation methods interpolate between
delete-relaxed planning and real planning (Keyder, Hoff-
mann, and Haslum 2012; 2014; Katz, Hoffmann, and
Domshlak 2013; Domshlak, Hoffmann, and Katz 2015).
Red-black planning applies the delete-relaxed semantics to a
subset of state variables (the “red” ones), letting them accu-
mulate their values, while keeping the real semantics for the
others (the “black” ones). It is tractable if the dependencies
between black variables are acyclic, and each black variable
is invertible. The heuristic function based on that tractable
fragment, hRB, was a key part of Mercury.

Distinctions at the level of entire state variables, however,
are very coarse-grained: either we remember all past val-
ues of a variable (red), or only the most recent one (black).
Grey planning uses limited-memory state variables, instead,
that allow more fine-grained relaxations through remember-
ing a subset of their most recent values. So it partially re-
laxes within state variables, remembering only a subset of
the most recent values, as needed for tractability. Limited
memory can be used to substantially extend the abovemen-
tioned tractable fragment. In hRB, non-invertible variables
cannot be painted black, because they may not be able to
go back to a previous value when required. In grey plan-
ning, the idea is to give these variables “just enough” mem-
ory to ensure this property, instead of fully delete-relaxing
them. The resulting heuristic function, hGray, has proven to
improve over hRB in many domains.

Implementation
As our other methods, hGray is implemented in Fast Down-
ward (Helmert 2006), adopting Domshlak et al.’s stop search
technique, which tests whether the relaxed plan is actually a
real plan, and if so, stops the search. In fact, we never run an
actual search with hGray, but only use the stop search mecha-
nism. If it succeeds in the initial state, we are done. Else, we
stop the run and proceed with the next component. We also
adopted the painting strategy of Domshlak, Hoffmann, and
Katz (2015), which has been used in the Mercury planner
(Katz and Hoffmann 2014). The main advantage of hGray

over the red-black heuristic of Mercury lies in the additional
stop-search prowess, thus adding another increment to that
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same main advantage of hRB over hFF. The abbreviation of
our grey-planning “no-search” approach is GREY. Condi-
tional effects are not supported.

Partial Delete Relaxation with hCFF

Like grey planning, the hCFF heuristic is an approach to par-
tial delete relaxation. The partially relaxed plans must re-
spect a given set of conjunctions C, which represent combi-
nations of facts that must be achieved simultaneously (Hoff-
mann and Fickert 2015; Fickert, Hoffmann, and Steinmetz
2016). Whenever a conjunction is a subset of the precon-
ditions of an action, the conjunction of these facts must be
achieved instead of the facts individually.

Consider the task illustrated below. The car has to move
from A to C. The car can only hold one unit of fuel, which
each drive action consumes, but can be refueled at any loca-
tion. Formally, there are STRIPS facts at(x) for the position
of the car and fuel to indicate if the car has fuel. Initially the
car is at location A and holds fuel.

A B C

A fully delete relaxed plan can ignore the fuel consump-
tion and just apply the drive actions from A to B and B to
C immediately after each other. The critical conjunction of
facts that is ignored here is that the car must be at B while
holding fuel before the second drive action can be executed.
This conjunction can not be achieved by any of the drive ac-
tions as they consume the fuel fact. A partially relaxed plan
generated by the hCFF heuristic respecting this conjunction
would have to add the refuel action before driving from B to
C, making the relaxed plan a real plan. In fact, with a suf-
ficiently large set of conjunctions C, all plans generated by
hCFF are real plans.

Refinement-HC with Novelty Pruning
The hCFF heuristic works best when the conjunctions are
generated online, in particular in Refinement-HC (RHC)
(Fickert and Hoffmann 2017a), which is an extension of
enforced hill-climbing (EHC) (Hoffmann and Nebel 2001).
Like standard EHC, the algorithm progresses through itera-
tions of breadth-first search (BrFS) until a state s with lower
heuristic value is found, then search continues from there.
In RHC, these explorations are bounded by a fixed depth. If
a state s with lower heuristic value can not be found within
that bound, the heuristic is refined and the BrFS phase is
restarted. Thus, RHC escapes local minima through heuris-
tic refinement instead of brute-force search. A second exten-
sion to standard EHC are restarts from the initial state (with-
out resetting the heuristic) whenever the search is stuck in
a dead end. Due to the convergence of the partially relaxed
plans generated by hCFF to real plans, RHC is complete.

In SaarPlan, we use an extension of Refinement-HC
where the refinement criterion is based on novelty pruning
instead of a simple depth bound (Fickert 2018). Instead
of using BrFS with bounded depth in the local exploration
phase, we perform exhaustive BrFS with incomplete novelty

pruning, similar to a single iteration IW(k) of iterated width
search (Lipovetzky and Geffner 2012). In our setting, a state
passes the novelty test if it contains at least one novel con-
junction c ∈ C, otherwise it is pruned. This corresponds
to IW(1), but uses the conjunctions of hCFF instead of the
individual facts. The novelty pruning is only applied in the
BrFS phase, and thus only considers the states in the current
BrFS exploration for pruning, not across the overall search.

GBFS and Weighted A∗

Refinement-HC can not always overcome the limitations of
local search. For example in Sokoban, the presence of deep
dead ends has proven difficult, and global search algorithms
like GBFS are much more suitable here.

Given these drawbacks, we place a time limit on
Refinement-HC, as well as a growth bound on the num-
ber of conjunctions for the hCFF heuristic and run GBFS
after Refinement-HC terminates. The growth bound on
hCFF is motivated by the observation that in domains where
Refinement-HC works well, the set of conjunctions typically
does not grow excessively large.

The GBFS phase uses a dual-queue of hCFF and a
landmarks-count heuristic (Porteous, Sebastia, and Hoff-
mann 2001; Richter, Helmert, and Westphal 2008). This
makes it is very similar to LAMA (Richter and Westphal
2010), using hCFF instead of hFF. The set of conjunctions
for the hCFF heuristic is reset to a fixed size bound be-
fore starting the GBFS phase. During search, the heuristic
periodically replaces old conjunctions by newly generated
ones, which allows it to adapt itself to the part of the search
space that is currently being explored (Fickert and Hoffmann
2017b). Again, similar to LAMA, when GBFS finds a so-
lution, search continues with an anytime phase of weighted
A∗ with incrementally lower weights. We cache heuristic
values across the GBFS and weighted A∗ iterations to re-
duce overhead.

Implementation
Unsurprisingly, hCFF and the related techniques are also im-
plemented on top of FD (Helmert 2006). Similar to the stop
search technique used in our grey planning component, here
we stop search whenever no conflict could be found in the
refinement process, which implies that the partially relaxed
plan is also a real plan.

SaarPlan Configurations
SaarPlan combines the described techniques into a sequen-
tial portfolio. In addition to the standard FD preprocessor,
we perform a relevance analysis based on h2 to simplify
the planning task prior to the search (Alcázar and Torralba
2015). The mutexes found in this process are also used by
the hCFF heuristic to reduce its computational overhead.

This section describes configuration details for the indi-
vidual tracks. We use the following abbreviations:

• PO: dual-queue for preferred operators.

• HA: helpful actions pruning.

• N: novelty pruning.
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In all tracks, we start by ignoring the action costs. Costs
are ignored altogether in the agile track, and only re-
introduced in the bounded-cost track if no plan below the
cost bound could be found. In the satisficing track, we re-
introduce the real costs upon finding the first plan.

In the following sub-sections, we detail the configurations
employed in each competition track. We provide the search
configurations, as well as the time each of the components
is allotted (in seconds).

Satisficing Track

The portfolio configuration for the satisficing track is shown
in Figure 1. By default, all configurations ignore action
costs, but reintroduce them after finding the first plan.

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 1M hFF FP,IP,PO 100s
(D)GBFS F/IF/IA 1/1/0.1M hFF (D)OSS,PO 600s

GREY - - hGray - 1100s*
RHC - - hCFF HA,N 1100s*
GBFS - - hLM,hCFF PO 1100s*
WA∗ - - hLM,hCFF PO 1100s*

Figure 1: Portfolio configuration in the satisficing track.
Components are launched top to bottom. Components
whose timeout is marked with * share their timeout. The
RHC component also has an individual timeout of 500s.

Saarplan starts with two decoupled search configurations.
The first one runs decoupled search with a fork factoring,
since these typically perform better, in particular when com-
bined with the strong leaf pruning methods (FP,IP). The sec-
ond component tries all factoring strategies, and additionally
enables decoupled orbit search (DOSS). If none of the fac-
toring strategies succeeds, the component falls back to stan-
dard search using the same options (indicated by the “D” in
parantheses). Both components use the hFF heuristic with
preferred operators in a dual-queue.

After the decoupled search components, we first attempt
to find a grey plan for the initial state and check if it is a real
plan. Then, we run the components of the OLCFF planner
(Fickert and Hoffmann 2018), starting with Refinement-HC
with novelty pruning. The final phase is a LAMA-like any-
time search with GBFS and weighted A∗ using incremen-
tally lower weights, where the main difference to LAMA is
the use of hCFF instead of hFF.

Agile Track

The portfolio configuration for the agile track is shown in
Figure 2. All configurations ignore action costs.

In the agile track, we use a similar configuration to the
satisficing track with only small differences. The second de-
coupled search configuration is moved to the end, and we
don’t need the weighted A∗ phase. Since the time limit is
much lower in the agile track, the time limits of the individ-
ual components are reduced accordingly.

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 1M hFF FP,IP,PO 30s
GREY - - hGray - 170s*
RHC - - hCFF HA,N 170s*
GBFS - - hLM,hCFF PO 170s*

(D)GBFS F/IF/IA 1/1/0.1M hFF (D)OSS,PO 100s

Figure 2: Portfolio configuration in the agile track. Compo-
nents are launched top to bottom. Components whose time-
out is marked with * share their timeout. The RHC compo-
nent also has an individual timeout of 100s.

Bounded-Cost Track
The portfolio configuration for the bounded-cost track is
shown in Figure 2. All components use normal action costs,
except the first two which use unit action costs and only
check if the cost-bound is satisfied upon finding a solution.

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 1M hFF FP,IP,PO 100s
(D)GBFS F/IF/IA 1/1/0.1M hFF (D)OSS,PO 600s

GREY - - hGray - 800s*
RHC - - hCFF HA,N 800s*
GBFS - - hLM,hCFF PO 800s*

(D)WA∗ F/IF/IA 10/10/1M hLM,hFF (D)OSS,PO 300s

Figure 3: Portfolio configuration in the cost-bounded track.
Components are launched top to bottom. Components
whose timeout is marked with * share their timeout. The
RHC component also has an individual timeout of 400s.

Again, we use a similar configuration to the satisficing
track. We replaced the anytime phase with a (decoupled)
weighted A∗ with w = 3, using hLM and hFF and a dual-
queue for preferred operators.

Conclusion
SaarPlan combines a set of powerful planning techniques
into a sequential portfolio. This portfolio is designed in a
way that quick-to-terminate methods, like star-topology de-
coupled search or grey planning’s stop-search, are applied
first, to find a plan as fast as possible. More search-heavy
algorithms like the online-refining hCFF heuristic are exe-
cuted later, in case the other methods fail. We augment our
techniques with recently introduced extensions like novelty
pruning, and symmetry breaking in decoupled search, to fur-
ther spread the range of techniques.
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Abstract

OLCFF is a sequential satisficing planner based on partial
delete relaxation with explicit conjunctions using the hCFF

heuristic. The heuristic can interpolate between fully delete
relaxed semantics and real semantics by choosing the set of
conjunctions C accordingly. Our planner is built around refi-
ning the heuristic online, which has proven to be the most
effective way to use the hCFF heuristic. The main search
algorithm used by the planner is a variant of enforced hill-
climbing with online refinement and novelty pruning, follo-
wed by a LAMA-like anytime phase with GBFS and weigh-
ted A∗ where hCFF is used in a dual queue with a landmarks-
count heuristic.

Introduction
In satisficing planning, heuristics based on the delete relax-
ation were part of most state-of-the-art planners for almost
two decades (e.g. (Hoffmann and Nebel 2001; Richter and
Westphal 2010; Katz and Hoffmann 2014)). However, the
delete relaxation often ignores critical features of the plan-
ning task. These pitfalls can be diminished by “un-relaxing”
part of the problem.

One approach to partial delete relaxation is red-black
planning, where not all variables are relaxed, but only some
of them (Domshlak, Hoffmann, and Katz 2015). The Mer-
cury planner (Katz and Hoffmann 2014) is based on red-
black planning, and was very successful at the last IPC.

We employ a different partial delete relaxation technique,
where certain combinations of facts must be respected by
the relaxed plans. For example in a transportation domain
with fuel consumption, it can be useful to consider being in
a specific location while still holding a certain amount oiif
fuel. The hCFF heuristic implements this by treating a set
of conjunctions C as atomic (Fickert, Hoffmann, and Stein-
metz 2016). Choosing C correctly is critical for the perfor-
mance of the heuristic, since, while the accuracy increases
with larger C, so does the computational complexity.

Fickert and Hoffmann (2017a) have recently shown that
the hCFF heuristic is most effective when the conjunctions
are generated online. They employ a variant of enforced hill-
climbing (Hoffmann and Nebel 2001), called Refinement-
HC, to detect when the search is stuck in a local minimum.
Whenever this happens, the heuristic is refined by adding

conjunctions to C until the local minimum is removed from
the search space surface.

The OLCFF planner is based on online refinement with
the hCFF heuristic. It uses an extension of Refinement-HC
with novelty pruning (Lipovetzky and Geffner 2012) as its
core search algorithm. The Refinement-HC phase is follo-
wed by a LAMA-like anytime search to find plans with bet-
ter quality. This second phase runs hCFF in a dual queue with
a landmarks-count heuristic (Richter, Helmert, and Westphal
2008).

hCFF and Refinement-HC
Delete relaxation heuristics can be made more accurate by
taking some delete information into account. The hCFF heu-
ristic generates partially relaxed plans that respect a given set
of conjunctions C (Fickert, Hoffmann, and Steinmetz 2016).
Achieving a conjunction c ∈ C means achieving the indi-
vidual facts represented by c simultaneously. Whenever a
conjunction is a subset of the preconditions of an action, the
conjunction of these facts must be achieved instead of the
facts individually. Thus, e.g. if an action has two precon-
ditions for which a conjunction exists, the partially relaxed
plan must achieve both preconditions at the same time. A
fully relaxed plan may achieve the first precondition, delete
it again while achieving the second one, and can still apply
the action.

Consider the task illustrated below. The car has to move
from A to C. The car can only hold one unit of fuel, which
each drive action consumes, but can be refueled at any loca-
tion. Formally, there are STRIPS facts at(x) for the position
of the car and fuel to indicate if the car has fuel. Initially the
car is at location A and holds fuel.

A B C

A fully delete relaxed plan can ignore the fuel consump-
tion and just apply the drive actions from A to B and B to
C immediately after each other. The critical conjunction of
facts that is ignored here is that the car must be at B while
holding fuel before the second drive action can be execu-
ted. This conjunction can not be achieved by any of the
drive actions as they consume the fuel fact. A partially re-
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laxed plan generated by the hCFF heuristic respecting this
conjunction would have to add the refuel action before dri-
ving from B to C, making the relaxed plan a real plan. In
fact, with a sufficiently large set of conjunctions C, all plans
generated by hCFF are real plans.

The hCFF heuristic works best when the conjunctions are
generated online, in particular in Refinement-HC (Fickert
and Hoffmann 2017a), which is an extension of enforced
hill-climbing (EHC) (Hoffmann and Nebel 2001). Like stan-
dard EHC, the algorithm progresses through iterations of
breadth-first search (BrFS) until a state s with lower heu-
ristic value is found, then search continues from there. In
Refinement-HC, these explorations are bounded by a fixed
depth. If a state s with lower heuristic value can not be
found within that bound, the heuristic is refined and the BrFS
phase is restarted. Thus, Refinement-HC escapes local mi-
nima through heuristic refinement instead of brute-force se-
arch. A second extension to standard EHC are restarts from
the initial state (without resetting the heuristic) whenever the
search is stuck in a dead end. Due to the convergence of
the partially relaxed plans generated by hCFF to real plans,
Refinement-HC is complete.

Planner Components
The planner consists of two main search components. First,
we run an extension of Refinement-HC with novelty pru-
ning. The second search component runs GBFS with a dual-
queue of the hCFF heuristic and a heuristic based on land-
marks. This is followed by an anytime search with weighted
A∗ using incrementally decreasing weights to obtain better
plans (similar to LAMA).

Refinement-HC with Novelty Pruning
The core of our planner is an extension of Refinement-HC
with novelty pruning (Fickert 2018). Instead of using BrFS
with bounded depth in the local exploration phase, we per-
form exhaustive BrFS with incomplete novelty pruning, si-
milar to a single iteration IW(k) of iterated width search (Li-
povetzky and Geffner 2012). In our setting, a state passes
the novelty test if it contains at least one novel conjunction
c ∈ C, otherwise it is pruned. This corresponds to IW(1),
but uses the conjunctions of hCFF instead of the individual
facts. We denote this extension with conjunctions by IW(C).
The novelty pruning is only applied in the BrFS phase, and
thus only considers the states in the current BrFS exploration
for pruning, not across the overall search. The simplified
pseudo-code is shown in Algorithm 1.

This extension improves Refinement-HC as it takes the
structure of the search space into account in the local ex-
plorations. Using novelty pruning here allows “interesting”
branches (with novel states) to be explored in more depth.
Sharing the set of conjunctions with hCFF also has a sy-
nergistic side-effect in Refinement-HC. The hCFF heuristic
becomes more expensive to evaluate with each added con-
junction, so refinement should be used carefully. On the
other hand, IW(C) is less restrictive with each added con-
junction. Thus, as Refinement-HC progresses, refinement
will be triggered less frequently with larger C (since the no-

Algorithm 1: Refinement-HC with Novelty Pruning
sbest := I
while h(sbest) 6= 0 do

Run IW(C) from sbest until a state s with
h(s) < h(sbest) is found.

if no such state exists then
Refine h in sbest.
continue

sbest := s

return SOLVED

velty pruning is less aggressive), which reduces further over-
head for hCFF.

GBFS and Weighted A∗

Refinement-HC can not always overcome the limitations of
local search. For example in Sokoban, the presence of deep
dead ends has proven difficult, and global search algorithms
like GBFS are much more suitable here.

Given these drawbacks, we place a time limit on
Refinement-HC, as well as a growth bound on the num-
ber of conjunctions for the hCFF heuristic and run GBFS
after Refinement-HC terminates. The growth bound on
hCFF is motivated by the observation that in domains where
Refinement-HC works well, the set of conjunctions typically
does not grow excessively large.

The GBFS phase uses a dual-queue of hCFF and a
landmarks-count heuristic (Porteous, Sebastia, and Hoff-
mann 2001; Richter, Helmert, and Westphal 2008). This
makes it is very similar to LAMA (Richter and Westphal
2010), which uses a dual queue of hFF and landmarks-count,
but using hCFF in place of hFF. The set of conjunctions
for the hCFF heuristic is reset to a fixed size bound before
starting the GBFS phase. During search, the heuristic then
periodically replaces old conjunctions by newly generated
ones, which allows it to adapt itself to the part of the search
space that is currently being explored (Fickert and Hoffmann
2017b). Again similar to LAMA, when GBFS finds a solu-
tion, search continues with an anytime phase of weighted A∗

with incrementally lower weights. We cache heuristic values
across the GBFS and weighted A∗ iterations to reduce over-
head.

Implementation
The planner is implemented on top of Fast Downward (Hel-
mert 2006). It performs a relevance analysis based on h2 in
the preprocessing phase (Alcázar and Torralba 2015), which
simplifies the planning task by removing superfluous acti-
ons and facts. Additionally, it finds mutex relations between
facts which are used by the hCFF heuristic to reduce its com-
putational overhead.

In the competition, we build our planner with profile-
guided optimization1. We generated profiling data by run-

1https://clang.llvm.org/docs/UsersManual.
html#profile-guided-optimization
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ning the planner on instances from previous IPCs. This data
is then used to optimize the executable, e.g. by prioritizing
the layout for frequently taken branches and making better
inlining decisions.

Configurations
This section describes configuration details of our planner
for the individual tracks.

Satisficing Track
The planner first runs Refinement-HC with unit action costs
with a timeout of 1200 seconds, and bounds the complexity
growth of the hCFF heuristic to a factor of 8 compared to
the heuristic without added conjunctions. If Refinement-HC
finds a solution, it is restarted with original action costs. Ot-
herwise, GBFS is run with unit action costs. Afterwards, we
run GBFS and then weighted A∗ with weights 5, 3, 2, and
1, each with original action costs. In GBFS and weighted
A∗, hCFF is used in a dual-queue with landmarks-count, but
only uses the preferred operators of the hCFF heuristic which
improved results in preliminary experiments.

Agile and Cost-Bounded Tracks
In the agile and cost-bounded tracks, the planner also starts
with Refinement-HC before running GBFS, but leaves out
the anytime phase with weighted A∗ since we can stop after
finding the first solution. In the agile track, the time limit for
Refinement-HC is set to 180 seconds.
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Alcázar, V., and Torralba, Á. 2015. A reminder about the im-
portance of computing and exploiting invariants in planning.
In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15), 2–6.
AAAI Press.
Clang compiler users manual, profile-guided optimization.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence 221:73–114.
Fickert, M., and Hoffmann, J. 2017a. Complete local search:
Boosting hill-climbing through online heuristic-function re-
finement. In Proceedings of the 27th International Confe-
rence on Automated Planning and Scheduling (ICAPS’17).
AAAI Press.
Fickert, M., and Hoffmann, J. 2017b. Ranking conjunctions
for partial delete relaxation heuristics in planning. In Fuku-
naga, A., and Kishimoto, A., eds., Proceedings of the 10th
Annual Symposium on Combinatorial Search (SOCS’17).
AAAI Press.
Fickert, M.; Hoffmann, J.; and Steinmetz, M. 2016. Com-
bining the delete relaxation with critical-path heuristics: A

direct characterization. Journal of Artificial Intelligence Re-
search 56(1):269–327.
Fickert, M. 2018. Making hill-climbing great again through
online relaxation refinement and novelty pruning. In Bu-
litko, V., and Storandt, S., eds., Proceedings of the 11th
Annual Symposium on Combinatorial Search (SOCS’18).
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Katz, M., and Hoffmann, J. 2014. Mercury planner: Pushing
the limits of partial delete relaxation. In IPC 2014 planner
abstracts, 43–47.
Lipovetzky, N., and Geffner, H. 2012. Width and seriali-
zation of classical planning problems. In Raedt, L. D., ed.,
Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI’12), 540–545. Montpellier, France: IOS
Press.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning. In
Cesta, A., and Borrajo, D., eds., Proceedings of the 6th Eu-
ropean Conference on Planning (ECP’01), 37–48. Springer-
Verlag.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Fox, D., and Gomes, C., eds., Pro-
ceedings of the 23rd National Conference of the American
Association for Artificial Intelligence (AAAI’08), 975–982.
Chicago, Illinois, USA: AAAI Press.

19



MAPlan: Reductions with Fact-Alternating Mutex Groups and hm Heuristics

Daniel Fišer and Anonı́n Komenda
Department of Computer Science, Faculty of Electrical Engineering,

Czech Technical University in Prague, Czech Republic
danfis@danfis.cz, antonin.komenda@fel.cvut.cz

Introduction
MAPlan (Fišer, Štolba, and Komenda 2015) is, originally,
a multi-agent planner that we adapted for the determinis-
tic optimal track of the International Planning Competition
(IPC) 2018. The planner uses state-based heuristic search
with a translator from PDDL to STRIPS (Fikes and Nilsson
1971) and then to the finite domain representation (FDR, or
SAS+) (Bäckström and Nebel 1995). The translator tries to
reduce the STRIPS problem (i.e., to remove spurious facts
and operators) using mutexes found by h2 and h3 heuris-
tics (Haslum and Geffner 2000; Haslum 2009) in both pro-
gression and regression, and by removing dead-end opera-
tors (operators that cannot be part of any plan) detected us-
ing fact-alternating mutex groups (fam-groups) (Fišer and
Komenda 2018). The inferred fam-groups are also useful in
the disambiguation process (Alcázar et al. 2013) that is es-
sential for the hm heuristics, especially in regression. The
fam-groups can also provide more concise encodings of the
problems in FDR than the most commonly used translator
from Fast Downward (Helmert 2006), although its impact on
the performance is very limited (Fišer and Komenda 2018).

For IPC 2018, we prepared two configurations of the
MAPlan planner. Both of the configurations use the afore-
mentioned reductions and the A? search algorithm. They
differ only in the heuristics. The first one (maplan-1)
uses the LM-Cut heuristic (Helmert and Domshlak 2009).
The second configuration (maplan-2) uses a simplified
abstraction heuristic based on merging a certain subset of
the inferred fam-groups, similarly to what is done in the
merge and shrink heuristic (Helmert, Haslum, and Hoff-
mann 2007) and pattern databases (Culberson and Schaeffer
1998; Edelkamp 2001). This heuristic is just a preliminary
work testing how big merges can fit into the memory and
how many overlapping fam-groups can these merges cover.

In the following sections we briefly introduce all the
methods we used.

Fact-Alternating Mutex Groups
A mutex group is a set of facts out of which maximally one
can be true in any reachable state. Mutex groups are invari-
ants that are primarily used in the translation from STRIPS

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to FDR for the creation of FDR variables. The inference
of mutex groups is in general PSPACE-Complete. The fact-
alternating mutex groups (fam-groups) were first introduced
by Fišer and Komenda (2018) as a subclass of mutex groups
of which inference is NP-Complete and they described an
algorithm based on the integer linear programming that is
complete with respect to maximal fam-groups. This algo-
rithm is implemented in the MAPlan planner using CPLEX
solver.

Fam-group of a certain form can be used for a detection of
operators that can produce only dead-end states, i.e., states
from which it is impossible to reach any goal state. Such
operators can be safely removed from the planning task, be-
cause these operators cannot be part of any plan. This is one
of the methods we use for a reduction of the input planning
problem.

Another useful application of fam-groups is in the disam-
biguation of operators’ preconditions and the goal specifica-
tion. Disambiguation is a simple process that extends a set
of facts with the fact that is the only possibility given a set
of facts out of which exactly one is a part of every state. For
example, consider an operator’s precondition {f1, f2} and
let us assume that every state must contain one of the facts
{f3, f4, f5}. If we know that there are no reachable states
that contain either {f1, f3} or {f1, f4}, then we can safely
extend the precondition with f5, because it is the only pos-
sibility. A certain subset of fam-groups can be easily identi-
fied as mutex groups that has not maximally one, but exactly
one fact in every reachable state. These fam-groups together
with the hm mutexes, described in the next section, are used
for the disambiguation which in turn improves a pruning of
operators and facts.

h2 and h3 Mutexes
A generalization of the hmax heuristic to a family of hm

heuristics (Haslum and Geffner 2000; Haslum 2009) offers
a method for the generation of mutex invariants that can be
used for reductions of the planning problems (Alcázar and
Torralba 2015). hmax is a widely known and a well under-
stood admissible heuristic for STRIPS planning. The heuris-
tic value is computed on a relaxed reachability graph as a
cost of the most costly fact from a conjunction of reachable
facts. The heuristic works with single facts, but it can be gen-
eralized to consider a conjunction of at most m facts instead.
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h1 would then be equal to hmax, h2 would build the reacha-
bility graph with single facts and pairs of facts, etc. Unfor-
tunately, the cost of the computation increases exponentially
in m, which is why, usually, only h1 and h2 variants are used.

The pruning of operators and facts proposed by Alcázar
and Torralba (2015) uses h2 heuristic combined with the dis-
ambiguation process as a reachability analysis that can prove
that certain operators and facts can be safely removed from
the problem. The algorithm runs, in turn, in progression and
in regression (on the dual planning problem (Massey 1999;
Pettersson 2005; Suda 2013)) removing the unreachable
facts and operators in each cycle until a fixpoint is reached.
The h2 heuristic in the algorithm can be easily switched to
any heuristic from the hm family, but with a considerably
increased computational time. In the MAPlan planner, we
use the pruning with h2 and fam-groups used for the dis-
ambiguation, and we also added the variant with h3, but we
restricted the running time of a single cycle to one minute.
That is, if the running time of the pruning using h3 in any
direction exceeds the limit of one minute, the pruning is pre-
maturely terminated and it is not used anymore for that prob-
lem. This is a rather weak restriction that still could cause
that the whole time limit will be consumed just by comput-
ing h3, but our tests on the domains from IPC 2011 and 2014
showed that this simple rule should be sufficient to disable
this type of pruning for large problems.

Merge without Shrink
The heuristic function used in the second configuration of
the submitted MAPlan planner (maplan-2) is built on the
inferred set of maximal fam-groups. It uses a similar ap-
proach as is used in pattern databases (PDB) (Culberson and
Schaeffer 1998; Edelkamp 2001), but instead of computing
the projections on the FDR variables, we use projections on
the fam-groups that are usually overlapping in a sense that
they contain a common subset of facts.

We start with the complete set of maximal fam-groups and
we merge (i.e., compute a synchronized product from the
corresponding projected transition systems) as many fam-
groups as possible to fit into memory. We use a 7 GB mem-
ory block in which we are, usually, able to fit around 20 000
abstract states. From the resulting merge we save the abstract
states along with the cost of the cheapest path to a goal state
as a heuristic estimate in the same way as is done in PDBs.
This process is repeated so that each maximal fam-group is
contained in at least one big merge. The selection of the fam-
groups used for merging is controlled by a greedy rule that
prefers fam-groups that share the most facts. The resulting
heuristic estimate is the maximum of the estimates over all
merges.

We realize that we could, probably, get much better esti-
mates if we adapted our approach to the framework of either
merge and shrink heuristics or PDBs, but this work was not
finished in time for IPC. However, we believe that using mu-
tex groups directly instead of FDR variables (which can be
considered as derivatives of mutex groups) can lead to bet-
ter merge and shrink strategies and to improvements in PDB
heuristics, which is a focus of our future research.
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Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–656.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the 6th European Conference on Planning,
13–24.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189–208.
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Abstract

Width-based search algorithms have recently emerged as a
simple yet effective approach to planning. Best-First Width
Search (BFWS) is one of the most successful satisficing
width-based algorithms, as it strikes a good balance between
an effective exploration based on a measure of state nov-
elty and the exploitation provided by traditional goal-directed
heuristics. Several conceptually interesting BFWS variants
have recently been shown to offer state-of-the-art perfor-
mance, including a polynomial-time BFWS planner which
is incomplete but fast and effective, and a black-box BFWS
planner that can plan efficiently with simulators, i.e. when the
transition function of the problem is represented as a black-
box function. In this paper, we describe six BFWS planners
involving these variations that we have entered into the 2018
International Planning Competition.

Introduction
Planning as heuristic search is one of the most success-
ful computational approaches to classical planning devel-
oped so far (Bonet and Geffner 2001; Hoffmann and Nebel
2001), dominating several of the past editions of the Inter-
national Planning Competition (IPC). The essential com-
ponent of this approach is the automatic derivation of an
heuristic function that informs the search from the declar-
ative representation of the problem in some modeling lan-
guage such as STRIPS or PDDL (Fikes and Nilsson 1971;
McDermott 2000). This is usually coupled with a suitable
search strategy and a number of search improvements such
as helpful actions, delayed evaluation and multiple search
queues (Hoffmann and Nebel 2001; Helmert 2006).

A recent and significant departure from this approach
are width-based search algorithms. Still framed within the
planning as search paradigm, width-based algorithms how-
ever do away with the reliance on heuristics and means-
ends analysis (Newell and Simon 1963), and use instead a
powerful exploration mechanism based on a structural, goal-
agnostic notion of state novelty, which roughly assigns value
to states based on how novel they are with respect to the
states already visited by the search strategy being employed
(Lipovetzky and Geffner 2012). The exploration mechanism
offered by the width-based approach can be combined with
traditional heuristics in greedy best-first-like search strate-
gies to produce state-of-the-art satisficing planning strate-

gies collectively called Best-First Width Search (BFWS)
(Lipovetzky and Geffner 2017a; Katz et al. 2017), but it also
has other interesting properties that go beyond performance.
First, state novelty measures seem to be a particularly effec-
tive pruning mechanism. Lipovetzky and Geffner (2017b)
have developed incomplete but polynomial BFWS variations
with a simple modification that consists on roughly pruning
from the search those nodes which are not novel enough.
The resulting algorithm solves more instances from previ-
ous competitions than IPC-winning, exponential-time plan-
ners such as LAMA or FF (Richter and Westphal 2010;
Hoffmann and Nebel 2001).

Second, width-based methods constitute a surprising de-
parture from previous planning research, as they do not re-
quire a declarative definition of the action model, an essen-
tial component of virtually all previous approaches, from
the first means-ends and partial-order planners (Newell and
Simon 1963; Tate 1977; Nilsson 1980) to the latest SAT,
OBDD, and heuristic search planners (Kautz and Selman
1996; Edelkamp and Kissmann 2009; Richter and West-
phal 2010; Rintanen 2012). Francès et al. (2017) show how
width-based methods are an effective means of dealing with
the standard IPC benchmarks even when no information on
the action structure is available to be used in the compu-
tation of e.g. heuristics or SAT models, that is, when the
transition function of the problem is given as a black box.
This is relevant, as there is a wide set of problems which
fit the classical planning model, but whose dynamics are
not easily represented in declarative languages, cf. the Atari
Learning Environment (Bellemare et al. 2013), the games of
the General Video Game competition (Perez-Liebana et al.
2016), Angry Birds (Renz 2015) and Minecraft (Johnson et
al. 2016), all of which expose action models through pro-
cedural, black-box interfaces that preclude the use of most
classical planners. At the same time, having effective plan-
ning algorithms that do not rely on a declarative represen-
tation of the action model greatly reduces the challenge of
modeling, as arbitrary, high-level language constructs such
as axioms or semantic attachments (Thiébaux et al. 2005;
Dornhege et al. 2009) can be seamlessly dealt with.

Width-based methods have also recently been extended
beyond classical planning to tackle finite horizon MDPs
(Geffner and Geffner 2015), partially observable problems
(MacNally et al. 2018) and problems with hybrid discrete
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and continuous dynamics (Ramirez et al. 2018). We here fo-
cus on the width-based classical planners that we have sub-
mitted to this year’s International Planning Competition.

The remainder of this paper is organized as follows. We
first present the essential ideas of width-based search, then
briefly describe the Best-First Width Search (BFWS) frame-
work, and highlight two interesting possibilities of BFWS-
derived planners which are used in some of our submit-
ted planners: polynomial runtime guarantees which make
BFWS incomplete but still quite effective, and the ability
of planning effectively on black-box representations of the
transition functions. We conclude by briefly reviewing the
actual planners entered into the competition. Many details
have been omitted for the sake of brevity, but we provided
pointers to the relevant literature where necessary.

Width-Based Search
Width-based search algorithms are forward state-space
search algorithms that rely on the key notion of novelty of a
state (Lipovetzky and Geffner 2012). Assuming that a state
is a set of propositional atoms, as standard in STRIPS-based
classical planning, the novelty w(s) of a state s is the size
of the smallest set of atoms Q such that s is the first state
encountered in the search where Q ⊆ s. Thus, if s is the
first state on the search that contains a certain atom p, then
w(s) = 1. If no such atom exists, but s is the first state on
the search that contains a certain pair of atoms {p, q}, then
w(s) = 2, and so on. An important property of the novelty of
a state is that it is a search-dependent but goal-independent
measure whose computation requires only knowledge about
the structure of the state.

The simplest width-based algorithm is the parametric
IW(k), a standard breadth-first search where any newly-
generated state s with novelty w(s) > k is pruned (Lipovet-
zky and Geffner 2012). IW(k) converges to breadth-first
search as the value of k approaches the number n of atoms
in the problem, but its time and space complexity are ex-
ponential only in k, hence polynomial if we consider a
fixed value of k. Interestingly, IW(k) has been shown to
solve any instance of many of the standard benchmark do-
mains with k = 2, i.e. in quadratic time, provided that
the goal is a single atom (Lipovetzky and Geffner 2012;
Lipovetzky 2014). This is because such domains have a
small and bounded width ω that does not depend on the size
of the instance and such that IW(k) with k = ω can (opti-
mally) solve any of their instances.

When goals are however not restricted to single atoms but
can be arbitrary conjunctions, strategies more sophisticated
than IW(k) are necessary. Different width-based algorithms
have been proposed to address that challenge, such as Seri-
alized IW (SIW) (Lipovetzky and Geffner 2012), SIW+ or
DFS+ (Lipovetzky and Geffner 2014). The most success-
ful among these approaches, which we describe next, is the
generic search schema known as Best-First Width Search.

Best-First Width Search
Lipovetzky and Geffner (2017a) have recently shown that
state-of-the-art performance over the standard classical plan-

ning benchmarks can be achieved when the exploration af-
forded by structural measures of width is combined with the
exploitation offered by traditional heuristic search methods.
BFWS is a standard best-first search that uses an extended
definition of novelty of a search node given certain parti-
tioning functions as the main criterion to prioritize nodes
in the open list. The novelty w(s) of a state s given func-
tions h1, . . . , hn is defined as the size of the smallest set
of atoms Q such that s is the first state encountered in the
search where all atoms in Q are true at the same time, con-
sidering only those previous states s′ with equal hi-values,
i.e., such that hi(s) = hi(s

′) for i = 1, . . . , n. This novelty
measure is also written as w〈h1,...,hn〉(s).

The best-performing BFWS planner described in
(Lipovetzky and Geffner 2017a) is BFWS(f5), which uses
w = w〈#g,#r〉, where #g(s) counts how many of the
atomic goals of the problem are not true in s, and #r(s)
is a path-dependent approximation of progress towards
achieving a certain set R(s) of atoms which are considered
to be relevant to reach the problem goal from state s. A
complete description of the algorithm can be found in
(Lipovetzky and Geffner 2017a); for the sake of brevity, we
here simply note that different alternatives in defining R(s)
are possible; the one that works best in (Lipovetzky and
Geffner 2017a) is computed from a delete-free relaxed plan
computed from s (Hoffmann and Nebel 2001).

Polynomial BFWS
Best-First Width Search provides an alternative to the IW(k)
and Serialized IW(k) algorithms (Lipovetzky and Geffner
2012) which is complete, but this necessarily implies that
the polynomial-time nature of IW(k) is lost. Lipovetzky
and Geffner (2017b) present additional variations of BFWS
which have guaranteed polynomial runtime, and in spite of
being incomplete, can solve a surprising amount of the clas-
sical planning benchmarks from previous IPCs. The first
such variant is k-BFWS, which is equal to BFWS but prunes
from the search those generated states s with novelty w(s) >
k. The second variant, k-M -BFWS, relaxes that strict prun-
ing criterion by allowing for the expansion of at most M
states with novelty higher than k, provided that they are di-
rect descendants of some state s with novelty w(s) < k
(Lipovetzky and Geffner 2017b).

Black-Box BFWS
One of the properties of width-based algorithms is that the
computation of novelty they rely on only requires knowl-
edge about the structure of the state, not about the action
model of the problem. This has allowed the successful use
of this approach in simulated environments such as the Atari
Learning Environment (Bellemare et al. 2013), where a
declarative definition of the action model is not available or
would be much harder to obtain than a procedural, black-
box implementation of the transition function of the problem
(Lipovetzky et al. 2015; Shleyfman et al. 2016).

On this same line, Francès et al. (2017) present
BFWS(R), a generalization of the BFWS(f5) algorithm de-
scribed above which uses alternative strategies for comput-
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ing the sets R(s) that do not require a declarative represen-
tation of the action model. The basic idea in most of these
strategies is to run a polynomial preprocessing phase where
the IW(1) (and, if necessary, IW(2)) algorithm is run from
the initial state of the problem to conduct an exploration of
the novelty-1 (and, eventually, novelty-2) polynomial sub-
space of the state space that allows us to identify which of
the problem atoms lie on some path that reaches at least
some of the atoms in the goal conjunction. The key assump-
tion behind this strategy is that the problem goal is expressed
as a conjunction of atoms, and that most goal atoms can
be individually reached by the polynomial IW(1) or IW(2)
algorithms,1 assumptions which many of the benchmarks
from past IPCs share.

Competition Planners
We here briefly describe the characteristics of the 6 different
width-based planners submitted to the competition. Table 1
summarizes the properties of each of the submitted planners
in terms of completeness, complexity bounds, and their abil-
ity to deal with simulators, i.e. black-box representations of
the transition function. Our two simulation-based planners,
FS-blind and FS-sim, use the PDDL action model of the
problem only at preprocessing, to (1) compile an efficient
black-box representation of the transition function based on
Fast Downward’s successor generator (Helmert 2006), and
(2) perform an ASP-based reachability analysis through the
Clingo ASP solver (Gebser et al. 2012). The fact that these
planners completely ignore the action model after this pre-
processing can be seen as an unnecessary handicap in the
context of the competition, but we are interested in observ-
ing the actual performance of this strategy, which has inter-
esting applications beyond PDDL-based planning. All plan-
ners are implemented mostly in C++, with some parsing and
preprocessing implemented in Python, and are built on top
of the LAPKT planning toolkit (Ramirez et al. 2015).

BFWS-preference This is the BFWS(f5) planner de-
scribed above (Lipovetzky and Geffner 2017a), with one dif-
ference for the satisficing track submission: once BFWS(f5)
finds a solution, the plan cost is given as an upper bound
to the weighted A∗ (WA∗) implementation used in LAMA
(Richter and Westphal 2010), which then runs to optimize
solution quality until the timeout is reached. The problem
given to WA∗ is preprocessed by h2 to reduce the number
of actions and minimize the search effort (Alcázar and Tor-
ralba 2015). This planner has been submitted to the agile and
satisficing tracks.

BFWS-polynomial This is the polynomial k-BFWS(f5)
(Lipovetzky and Geffner 2017b), which runs BFWS(f5) but
prunes those nodes whose novelty is higher than k. The
planner runs 1-BFWS first; if no solution is found, then a
sequence of 2-M -BFWS calls with M = 1, 2, 4, 8, 16, 32
follows, where M is a parameter that stands for how many

1Note that finding plans that reach each of the goals individually
is different than finding plans that reach all goals jointly.

children n′ of any node n with novelty w(n) ≤ 2 have them-
selves novelty w(n′) > 2 but are not pruned. To keep the
submission polynomial, no optimization step has been used
on the satisficing track. This planner has been submitted to
the agile and satisficing tracks.

Dual-BFWS Dual-BFWS (Lipovetzky and Geffner
2017a) uses the polynomial and incomplete 1-BFWS
search, pruning all nodes whose novelty is bigger than
1. If this incomplete search fails, a complete BFWS(f6)
search is run, where f6 = 〈w〈hL〉, help, hL, w〈hFF〉, hFF〉
combines novelty measures with the landmark-based hL

heuristic (Richter and Westphal 2010), helpful actions
and hFF (Hoffmann and Nebel 2001). This type of dual
architecture is present in early successful planners such as
FF. This planner has been submitted to the agile, satisficing
and cost-bounded tracks. The satisficing track submission
includes the same WA∗-based optimization as described for
the BFWS-preference planner, whereas the cost-bounded
track submission just uses the bound to prune solutions
while searching.

DFS+ This is the extension of SIW+ described in
(Lipovetzky and Geffner 2014), but instead of increasing the
bound of IW(k) until a new goal is reached or the prob-
lem is solved, when the bound is 2, we backtrack to the
last IW search and continue searching for other states that
achieve one more goal. DFS+ can be approximated as a
BFWS(f5) where the evaluation function is reversed as f5 =
〈#g, w〈#r,#g〉〉, i.e. preferring first states that achieve more
goals, and then breaking ties by novelty extended with the
goal and relax plan counters. DFS+ is polynomial, but the
number of nodes it expands depends on the number of states
that decrease the count #g of unachieved goal atoms within
each IW+(2) call, which is hard to estimate. This planner
has been submitted to the agile and satisficing tracks, with
no optimization step for the latter.

FS-blind FS-blind is the BFWS(R0) simulation-based
planner as described in (Francès et al. 2017). The planner
runs a Best-First Width Search where the set of relevant
atoms R(s) is always taken to be the empty set, which effec-
tively means that the only information about the goal that the
planner exploits is a simple goal-count heuristic that evalu-
ates how many atoms in the goal conjunction are satisfied in
each state. This planner has been submitted to the agile and
satisficing tracks.

FS-sim FS-sim is the BFWS(R∗G) simulation-based plan-
ner as described in (Francès et al. 2017), which is like FS-
blind above but exploits additional information about the
goal, inferred in an extra preprocessing step by running the
IW(1) and IW(2) algorithms from the initial state of the
problem (as described in the Simulation-Based BFWS sec-
tion above). This planner has been submitted to the agile
and satisficing tracks.
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Planner Complete Polynomial Black-box

BFWS-preference x
BFWS-polynomial x
Dual-BFWS x
DFS+ x
FS-blind x x
FS-sim x x

Table 1: Properties of width-based planners submitted to IPC
2018.

Language Expressivity
All of the planners submitted to the competition support
universal quantification and conditional and universally-
quantified effects, but do not have full support for axioms.
The two BFWS(R)-based planners (FS-blind, FS-sim) are
implemented in the FS planner (Francès and Geffner 2015;
2016), which deals with problems specified in the Functional
STRIPS language (Geffner 2000), a superset of STRIPS
with support for function symbols. The planner additionally
supports a number of interesting extensions which inspired
the development of the BFWS(R) algorithms, such as black-
box specifications of the transition function, or of the proce-
dural denotation of certain fixed predicate and function sym-
bols, also referred to as semantic attachments (Dornhege et
al. 2009)

The rest of the submitted planners (BFWS-preference,
BFWS-polynomial, Dual-BFWS and DFS+) support con-
ditional and universally-quantified effects, as said, but their
use of the Fast Downward parser, which occasionally trans-
forms universal quantifiers into axioms, make these planners
fail in these rare cases, since support for axioms is not yet
implemented.

Summary
We have presented the six satisficing classical planners
submitted to the 2018 International Planning Competition.
These six planners explore different conceptually interesting
variants of best-first width search: some are complete, some
are incomplete but polynomial, and some are black-box pro-
cedures that do not require any declarative representation of
actions in terms of preconditions and effects.
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Abstract

This planner is an updated and significantly modified version
of the heuristic (CPC) presented in (Franco et al. 2017).
The Complementary1 planner uses pattern databases (PDBs).
A PDB is a heuristic function in the form of a lookup table
that contains optimal solution costs of a simplified version
of the task. In this planner we use a method that dynami-
cally creates multiple PDBs which are later combined into
a single heuristic function. At a given iteration, our method
uses estimates of the search space size to create a PDB that
complements the strengths of the PDBs created in previous
iterations.
The biggest difference with (Franco et al. 2017) is that the
original method always started with smaller PDBs and used
a priori time limits to sequentially increase the PDB’s size
limit while the new method has no such schedule or initial
bias. Complementary1 uses the UCB1 bandit algorithm to
learn which PDB size bracket fits best the current problem
given the previously selected PDBs. We have also added two
new seeding algorithms, based on bin packing, and also added
a new pattern generation algorithm based on Gamer. Finally,
the code itself has been refactorized to ease the addition of
evaluation methods, generation methods and other alternative
configurations.

Introduction
Excerpt from (Franco et al. 2017)
Pattern databases (PDBs) map the state space of a classical
planning task onto a smaller abstract state space by consid-
ering only a subset of the task’s variables, which is called
a pattern (Culberson and Schaeffer 1998; Edelkamp 2001).
The optimal distance from every abstract state to an ab-
stract goal state is precomputed and stored in a lookup ta-
ble. The values in the table are used as a heuristic function
to guide search algorithms such as A∗ (Hart et al. 1968)
while solving planning tasks. Since a PDB heuristic is
uniquely defined from a pattern, we also use the word pat-
tern to refer to a PDB. The combination of several PDBs
can result in better cost-to-go estimates than the estimates
provided by each PDB alone. One might combine mul-
tiple PDBs by taking the maximum (Holte et al. 2006;
Barley et al. 2014) or the sum (Felner et al. 2004) of the

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

PDBs’ estimates. In this paper we consider the canonical
heuristic function, which takes the maximum estimate over
all additive PDB subsets (Haslum et al. 2007). The chal-
lenge is then to find a collection of patterns from which an
effective heuristic is derived.

Multiple approaches have been suggested to select good
pattern collections (Haslum et al. 2007; Edelkamp 2006;
Kissmann and Edelkamp 2011). Recent work showed that
using a genetic algorithm (Edelkamp 2006) to generate a
large collection of PDBs and greedily selecting a subset of
them can be effective in practice (Lelis et al. 2016). How-
ever, while generating a PDB heuristic, Lelis et al.’s ap-
proach is blind to the fact that other PDBs will be considered
in the selection process. Our proposed method, which we
call Complementary PDBs Creation (CPC), adjusts its PDB
generation process to account for the PDBs already gener-
ated as well as for other heuristics optionally provided as
input.

CPC sequentially creates a set of pattern collections Psel

for a given planning task ∇. Regular CPC starts with an
empty Psel set and iteratively adds a pattern collection P
to Psel if it predicts that P will be complementary to Psel .
We say thatP complementsPsel if A∗ using a heuristic built
fromP ∪Psel explores a smaller search space than when us-
ing a heuristic built from Psel . CPC uses estimates of A∗’s
search space to guide a local search in the space of pattern
collections1. After Psel has been constructed, all the corre-
sponding PDBs are combined with the canonical heuristic
function (Haslum et al. 2007).

Comments
We evaluated our pattern selection scheme in different set-
tings in (Franco et al. 2017) , including explicit and sym-
bolic PDBs. Our results showed that combining symbolic
PDB heuristics were able to outperform existing methods.
Futhermore, it also showed that CPC could create comple-
mentary PDBs to other methods. Our best combination was

1The (Franco et al. 2017) CPC version explores both size and
time as metrics to decide whether to select a pattern collection. For
the time predictions we used SS planner we have re-factorized the
code, but did not finish the time selection in time. We have instead
used the simpler to code random walk method to evaluate patterns.
Note that for symbolic PDBs, both time and size selection methods
had very similar performance.

28



using our method to complement a symbolic perimeter PDB.
The selected method to be complemented for this competi-
tion first generates a symbolic PDB up to a time limit of 250
seconds, a memory limit of 4GBs2. One advantage of seed-
ing our algorithm with such a perimeter search is that if there
is an easy solution to be found in what is basically a brute
force backwards search, we are finished before we even start
finding complementary PDBs. If a PDB contains all avail-
able variables, any optimal solution for such abstraction is
also necessarily an optimal solution in the real search space.
In such cases we stop building the perimeter and simply re-
turn the optimal plan found.

For this planner, we have added two new seeding meth-
ods besides the perimeter PDB we collectively refer to as
bin-packing. The first one uses First Fit Increasing to try
to find the smallest collection of PDB using the bin pack-
ing principle. The second method uses First Fit Decreas-
ing to do the same. Bin packing for PDBs tries to create
the smallest number of PDBs which uses all available vari-
ables. While reducing the number of PDBs used to group
all possible variables does not guarantee a better PDB, the
less number of collections, the less likely on average to miss
interactions between variables due to being placed on dif-
ferent PDBs3. PDB selection methods tend to suffer from
diminishing returns, i.e.the more time invested using a pat-
tern generation method, the less likely it is to find a new
improving one. Using different PDB generation methods or
varying their parameters, e.g. PDB size limits, is how we try
to ameliorate diminishing returns.

If no solution is found after the perimeter PDB is finished,
our method will start generating pattern collections stochas-
tically until either the generation time limit (900 secs) or
the overall PDB memory limit (8 GBs) are reached. CPC
decides whether to add a pattern collection to the list of se-
lected patterns if it is estimated that adding such PDB will
speed up search. We used the stratified selection time pre-
diction method described in (Franco et al. 2017) to estimate
this. Note that when a pattern collection is added, all its pat-
terns are collected using the canonical combination method
in Fast Downward (from now on referred to as FD as it was
in the 2017 version we forked our code from).

(Franco et al. 2017) compared the pattern selection meth-
ods to the Gamer algorithm (Kissmann and Edelkamp 2011).
Gamer is based on the idea of trying to discover the sin-
gle best possible PDB for a problem. Its pattern selection
method can be summarized as an iterative process, starting
with all the goal variables in one pattern, where the casually
connected variables who would increase the most the aver-
age h value of the associated PDB are added to the Gamer
pattern. We have created a new ”Gamer-style” pattern gen-
eration method which behaves similarly, more details on the

2A maximum amount of BDD nodes in the perimeter frontier of
10 million was also used. This was used as a failsafe on the actual
implementation, otherwise the code occasionally would get stuck
while generating the next step for the BDD generation.

3The packing algorithm used here ensures that each PDB has a
least one goal variable and also that all variables in a PDB are casu-
ally connected, on their own or through a chain of local variables,
to at least one goal variable in the PDB.

next section. This pattern selection method is intended to be
complementary to the ones in the original CPC methods.

Once all patterns have been selected, the resulting canoni-
cal PDB combination is used as an admissible heuristic to do
A* search for the sequential optimal track. We also added
a cost-bounded option, where we used a slightly modified
version of lazy greedy search as coded in FD. The mod-
ification is that instead of pruning all generated successor
nodes whose g value is above the bounded cost, we actually
prune all nodes whose g+h values are above the bounded
cost. This is only guaranteed to keep solution cost at or be-
low the bounded cost if the heuristic is admissible. Since
this is the case for our heuristic, there is no reason to take
advantage of this. Note that this track is an experimental
version for us.

We decided not to submit this planner for the Satisficing
track due to the inherent incompatibility of our heuristic and
the track. Generating large symbolic PDBs cost a signif-
icant amount of time. Finding which patterns make good
pattern collections is even more costly. In satisficing, the
critical factor is finding a solution as quickly as possible,
and hence it is generally better when using heuristics to use
those which do not incur in large preprocessing costs.

List of Changes and Configuration Choices
• Moved to 64 bits build, due to the increase of memory

limit on the IPC to 8 GBs. It required doubling the rele-
vant PDB and overall memory limits.

• Using only symbolic PDBs.

• After the initial Perimeter search is finished, we run two
different bin-packing algorithms in order to generate op-
timized SAS+ variable distribution to generate the PDBs.

– First Fit Decreasing with a time limit of 50 seconds
as recommended by the Authors. This algorithm dis-
tributes the variables in different bins according to their
size in bits. The variables are initially shorted by their
size. Then the smaller variables are grouped in the first
bins, while the bigger are grouped in the last ones and
sometimes on their own.

– First Fit Increasing with a time limit of 75 seconds.
This algorithm distributes the variables in different bins
according to their size as the previous one but in this
case the bigger variables are grouped in the first bins
while the smaller are grouped in the last ones. The au-
thors empirical tests have showed First Fit Increasing to
do better on average when compared to the Decreasing
version of the algorithm.

• Dropped (Franco et al. 2017) Stratified Sampling (SS),
we are still finishing porting the original SS code. Note
that for symbolic PDBs performance was quite similar.
This is explained in (Franco et al. 2017), to summarize on
average when adding a symbolic PDB4 which reduces the
size of the search space it also tends to reduce the overall

4Because on average symbolic PDBs enables us to cover much
larger search spaces, hence reducing the benefit of using multiple
complementary smaller PDBs vs a few larger ones.
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run time, hence making both evaluation methods almost
equivalent performance wise.

• All PDB size limits (from a minimum of 108 to a max-
imum of 1020) are equally likely to be chosen. We use
the UCB1 algorithm to learn in situ which PDB size lim-
its are likeliest to do better. Note that the UCB1 will
change the recommended PDB size limits if diminishing
returns become a significant problem for a specific PDB
size bracket. On the original version, fixed time limits
were given to increase the PDB size limit by an order of
magnitude, potentially forcing the heuristic to keep trying
a size limit not justified by the current problem data.

• New Gamer-inspired generation method. Our modified
CPC algorithm decides on each iteration which pattern
generation method to use. We use UCB1 to learn whether
to use the CBP (Franco et al. 2017) generation method
or the Gamer-inspired method. Note that the Gamer al-
gorithm has a termination condition if no variable can be
added to improve the average heuristic value of the se-
lected pattern. In our case, we stop calling the Gamer
generation method if we have also discovered that no vari-
able can sufficiently increase the average heuristic value
given the current time and size limits.

• Hybrid evaluation methods: Our other pattern generation
methods start from scratch, however for the Gamer style
pattern selection method, the choice is always whether
to add variables to the previously selected pattern. For
the Gamer-inspired pattern generation method, we use
the average heuristic values to decide whether the next
iteration is improving the pattern. If no variable can be
added which sufficiently increases the average heuristic
value of the Gamer style pattern, this method is dropped
from the available pattern selection methods UCB1 can
select from. However, in terms of comparing the Gamer
style pattern with the already selected patterns by CPC we
still use the in situ probing mechanism based on problem
data, in this case whether the size of the search space is
predicted to be reduced by adding the new Gamer style
pattern.

• UCB1 is also used to decide how many goal variables are
present in a single pattern, the original CBP method was
seeded by just one goal variable per pattern. We noticed
that one of the reasons Gamer does so well for some prob-
lems is that it starts with all the goal variables. For some
problems, missing even one goal variable in each pattern
when using CBP results in much lower accuracy. We use
UCB1 to learn if this is the case in the current problem.
As an added bonus, it increases the diversity of PDB gen-
eration methods we use and hence hopefully ameliorate
diminishing returns.

Results
Following is an ablation-type study were we analyze which
components worked best (Table 1). We used the New
Zealand Nesi Cluster. Domain names have been abbrevi-
ated to either the first 3 letters or the first letter of each word
for spaces saving purposes.

Complementary1, the newest implementation, solved the
same number of overall problems as Complementary2, the
same implementation as in (Franco et al. 2017) with some
bug fixes, however their ablation studies tell a rather dif-
ferent study, A full analysis goes beyond the scope of this
extended abstract, instead we are going to provide our first
impressions.

Table 1 shows the overall results for our competition sub-
mission (Comp1/Reg), with and without the initial perime-
ter PDB (Comp1/NoPer), with and without the seeding bin
packing generator and finally for each of the individual
packing method on their own (CBP, Gamer).

The biggest difference with Complementary2 is that drop-
ping the initial perimeter PDB would have increased the
number of overall solved problems by 2 5. The initial
perimeter PDB was very helpful for (Franco et al. 2017)
and it was also helpful for the same implementation (Com-
plementary2 planner) for the IPC2018 problems. Dropping
the perimeter PDBs resulted in solving at least 10 prob-
lems less when using any combination of the pattern gen-
erators used in Complementary2. It seems that using UCB1
to learn which PDB sizes fit best the problem has reduced
our dependency on the perimeter PDB to obtain best results.
For example, Complementary2/CBP solved 106 problems
while Complementary1/CBPNoBP solved 120. Both used
the same pattern generation method(albeit with the option
to choose more starting goal variables in the latest version
of CBP). Neither used a perimeter PDB. For detailed Com-
plementary2 results, see the Complementary2 extended ab-
stract.

It was also surprising to us that the Gamer module,
seeded by BinPack (Comp1/Gamer+BinPack), solved 4
more problems than if we use our selection mechanism
(Comp1/NoPer+BinPack) and would have actually won the
competition. This would indicate that for some problems the
best option was to keep growing the Gamer-style pattern but
instead we selected CBP (or run out of time before we could
grow the Gamer-style PDB to the same size). Finding out
which is future work.

Finally, we also included the best possible results if we
knew which is the best pattern generator method a priori
for free. 139 problems are actually solvable using the right
combination of generation methods, 15 more than when us-
ing our selection mechanism. Of course this comparison is
biased,i.e. when running our selection mechanism the whole
available time has to be split between the preferred pattern
generators, while when picking the best out of each meth-
ods, each of them had the whole 900 seconds generation
time. This means the number of patterns tested is much
larger when giving each method 900 seconds. What it does
show is the potential of symbolic PDBs in planning.

Concluding Remarks
The competition results were quite good for optimal plan-
ning, where we were the runners up (winner was 126
problems while we solved 124). We were also the best

5and hence would have draw with the competition winner in
terms of problems solved
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Table 1: Coverage of Complementary1 Modules. Reg stands for all components active. ”NoPer” stands for perimeter PDB inactivated.
”+BinPack” stands for using PDBs generated by bin packing generator. ”CBP”, ”Cgamer” and ”BinPackOnly” rows also have Perimeter
inactive.

Domain/Method Agr Cal DN Nur OSS PNA Set Sna Spi Ter Total
Comp1/Reg 10 11 13 12 12 19 9 10 12 16 124

Comp1/NoPer+BinPack 10 12 14 14 12 6 9 12 11 16 126
Comp1/NoBinPack 6 11 13 14 12 19 9 11 11 16 122

Comp1/CBP+BinPack 8 12 14 13 12 18 9 11 11 16 124
Comp1/CBP-NoBinPack 6 12 14 13 12 18 9 9 11 16 120
Comp1/Gamer+BinPack 13 12 14 14 12 17 9 12 11 16 130
Comp1/Gamer-BinPack 8 12 12 16 12 18 9 14 11 16 128

Comp/BinPackOnly 7 12 14 12 12 7 9 11 11 12 107
Solved by any of the Comp1 methods above

* 14 12 14 16 12 20 9 14 12 16 139
Competition result below included for Completeness

Comp1 10 11 14 13 13 17 8 11 11 16 124

non-portfolio approach. However, a Gamer-style approach
would have resulted in the best overall results (and easily
won the competition). This is not that surprising when look-
ing at (Franco et al. 2017) where even though our selector
method (without gamer generators) did better overall, it was
the second best method. This confirms that which Pattern
Generator method is better is very much a question of which
domain is it to be used for.

Interestingly, when running each pattern generation
method on its own, 15 more problems are solvable. The
question is if this was because there was more time allocated
to generate patterns when running each method on their own,
or if the selection mechanism has significant scope for im-
provement. This is future research.

Using the 2 bin-packing generators to seed the heuristic
proved quite useful. It improved our overall results for all
the methods we tested. The implementation we did of the
Bin Pack generator was very last minute and did not include
any stochastic method. Generally, the more diverse the pat-
tern generators used, the more likely it is for one of them
to find good patterns. The preliminary results here seem to
indicate that using bin packing techniques as pattern gener-
ators is quite promising as a complement to CBP (or RBP in
Complementary2) and Gamer.

Finally, it seems that Complementary1 using the UCB1
bandit algorithm to learn which PDB size bracket fits best
the current problem, given the previously selected PDBs,
has resulted in lowering our dependency on the perimeter
PDB to obtain best results. While on the old implementation
(Complementary2) dropping the perimeter would result in
solving 10 fewer problems, Complementary1 actually solves
more problems without the perimeter PDB, regardless of the
combination of pattern generators used. A more extensive
and detailed analysis is required to confirm this first impres-
sion.
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Abstract

This planner is an implementation of the heuristic (CPC) pre-
sented in (Franco et al. 2017), the only updates are a few
bug fixes. This paper contains a brief summary of that work
with a slant on which exact configuration was used and why.
Please quote (Franco et al. 2017) as well when discussing
this planner.
A pattern database (PDB) for a planning task is a heuristic
function in the form of a lookup table that contains optimal
solution costs of a simplified version of the task. In this plan-
ner we use a method that sequentially creates multiple PDBs
which are later combined into a single heuristic function. At a
given iteration, our method uses estimates of the A∗ running
time to create a PDB that complements the strengths of the
PDBs created in previous iterations. We used symbolic PDBs
because the current implementation supports conditional ef-
fects, a requirement in the IPC18. Additionally, in our bench-
mark tests, this was the best option even without conditional
effects.

Introduction
This paper contains excerpts from (Franco et al. 2017) be-
cause this planner is an exact implementation of the CPC
heuristic, specifically the CPC-S-P configuration. Other
parts of the original paper have been summarized. Com-
ments have been added to reflect the reasoning behind some
of our choices. But first, we will give some context informa-
tion for those not familiar with PDBs.

Excerpt from Original Paper
Pattern databases (PDBs) map the state space of a classical
planning task onto a smaller abstract state space by consid-
ering only a subset of the task’s variables, which is called
a pattern (Culberson and Schaeffer 1998; Edelkamp 2001).
The optimal distance from every abstract state to an ab-
stract goal state is precomputed and stored in a lookup ta-
ble. The values in the table are used as a heuristic function
to guide search algorithms such as A∗ (Hart et al. 1968)
while solving planning tasks. Since a PDB heuristic is

∗This work was carried out while S. Franco was a postdoctoral
fellow at Universidade Federal de Viçosa, Brazil.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

uniquely defined from a pattern, we also use the word pat-
tern to refer to a PDB. The combination of several PDBs
can result in better cost-to-go estimates than the estimates
provided by each PDB alone. One might combine mul-
tiple PDBs by taking the maximum (Holte et al. 2006;
Barley et al. 2014) or the sum (Felner et al. 2004) of the
PDBs’ estimates. In this paper we consider the canonical
heuristic function, which takes the maximum estimate over
all additive PDB subsets (Haslum et al. 2007). The chal-
lenge is then to find a collection of patterns from which an
effective heuristic is derived.

Multiple approaches have been suggested to select good
pattern collections (Haslum et al. 2007; Edelkamp 2006;
Kissmann and Edelkamp 2011). Recent work showed that
using a genetic algorithm (Edelkamp 2006) to generate a
large collection of PDBs and greedily selecting a subset of
them can be effective in practice (Lelis et al. 2016). How-
ever, while generating a PDB heuristic, Lelis et al.’s ap-
proach is blind to the fact that other PDBs will be considered
in the selection process. Our proposed method, which we
call Complementary PDBs Creation (CPC), adjusts its PDB
generation process to account for the PDBs already gener-
ated as well as for other heuristics optionally provided as
input.

CPC sequentially creates a set of pattern collections Psel

for a given planning task ∇. CPC starts with an empty Psel

set and iteratively adds a pattern collection P to Psel if it
predicts that P will be complementary to Psel . We say that
P complements Psel if A∗ using a heuristic built from P
∪Psel solves ∇ quicker than when using a heuristic built
fromPsel . CPC uses estimates of A∗’s running time to guide
a local search in the space of pattern collections. After Psel

has been constructed, all the corresponding PDBs are com-
bined with the canonical heuristic function (Haslum et al.
2007).

IPC2018 Choices
We evaluated our pattern selection scheme in different set-
tings in (Franco et al. 2017) , including explicit and sym-
bolic PDBs. Our results showed that combining symbolic
PDB heuristics were able to outperform existing methods.
Furthermore, it also showed that CPC could create comple-
mentary PDBs to other methods. Our best combination was
using our method to complement a symbolic perimeter PDB.
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The selected method to be complemented for this competi-
tion first generates a symbolic PDB up to a time limit of 250
seconds, a memory limit of 4GBs1. One advantage of start-
ing our algorithm with such a perimeter search is that if there
is an easy solution to be found in what is basically a brute
force backwards search, we are finished before we even start
finding complementary PDBs. If a PDB contains all avail-
able variables, any optimal solution for such abstraction is
also necessarily an optimal solution in the real search space.
In such cases we stop building the perimeter and simply re-
turn the optimal plan found.

If no solution is found after the perimeter PDB is finished,
our method will start generating pattern collections stochas-
tically until either the generation time limit (900 secs) or
the overall PDB memory limit (4 GBs) is reached. CPC
decides whether to add a pattern collection to the list of se-
lected patterns if it is estimated that adding such PDB will
speed up search. We used the stratified selection time pre-
diction method described in the original paper to estimate
this. Note that when a pattern collection is added, all its pat-
terns are collected using the canonical combination method
in Fast Downward (from now on referred to as FD as it was
in the 2017 version we forked our code from).

Once all patterns have been selected, the corresponding
canonical PDB combination is used as an admissible heuris-
tic to do A* search for the sequential optimal track. We
also added a cost-bounded option, where we used a slightly
modified version of lazy greedy search as coded in FD. The
modification is that instead of pruning all generated succes-
sor nodes whose g (current path cost) value is above the
bounded cost, we actually prune all nodes whose g+h (cur-
rent path cost + estimated distance to goal) values are above
the bounded cost. This is only guaranteed to keep solution
cost at or below the bounded cost if the heuristic is admis-
sible. Since this is the case for our heuristic, we take ad-
vantage of the improved pruning capability. Note that this
track is an experimental version for us, I personally have
very little experience in cost-bounded search and make no
claim this is the most efficient search method. We thought it
would be nice to try the CPC heuristic in this setting as well.

We decided not to submit this planner for the Satisfic-
ing track due to the inherent incompatibility of our heuristic
with respect to this track. Generating large symbolic PDBs
cost a significant amount of time. Finding which patterns
make good pattern collections is even more costly because
most of the PDBs generated are never used for the actual
search. In Satisficing, the critical factor is finding a solution
as quickly as possible, and hence it is generally better when
using heuristics to pick those which do not incur in large
preprocessing costs.

Problem Definition
This section is identical to the original, included for com-
pleteness.

1A maximum amount of BDD nodes in the perimeter frontier of
10 million was also used. This was used as a failsafe on the actual
implementation, otherwise the code occasionally would get stuck
while generating the next step for the BDD generation.

We are interested in finding a set of pattern collections
Psel that minimizes the running time of A∗ using the heuris-
tic function obtained from Psel , denoted hPsel

. We approx-
imate the running time of A∗ guided by hPsel

while solv-
ing a task ∇, denoted T (Psel ,∇), as introduced by Lelis et
al. (2016).

T (Psel ,∇) = J(Psel ,∇)× (thPsel
+ tgen) .

Here, J(Psel ,∇) is the number of nodes A∗ employing hPsel

generates while solving ∇, thPsel
is hPsel

’s average time for
computing the heuristic value of a single node, and tgen
is the node generation time. Although the exact value of
T (Psel ,∇) is only known once A∗ finishes its search, one
is able to compute an approximation, denoted T̂ (Psel ,∇).
The value of T̂ (Psel ,∇) is computed by using approxima-
tions of thPsel

and tgen, which are obtained while computing
an estimate for J(Psel ,∇), denoted Ĵ(Psel ,∇). Ĵ(Psel ,∇)
is obtained by running Stratified Sampling (Chen 1992). We
write Ĵ instead of Ĵ(Psel ,∇) wheneverPsel and∇ are clear
from the context.

Stratified Sampling Evaluation
We used stratified sampling for our planner as described in
the original paper. We briefly summarize it here, for a de-
tailed discussion please see (Franco et al. 2017).

Stratified Sampling (SS) estimates numerical properties
(e.g., tree size) of search trees by sampling. Lelis et
al. (2014) showed that SS is unable to detect duplicates in
the search tree in its sampling procedure. Instead, we use
SS to estimate the size of the search tree S(I, b), for some
value b, and use this estimate as an approximation Ĵ for the
nodes generated by A∗. SS uses a stratification of the nodes
in the search tree rooted at I through a type system to guide
its sampling.

The type system we use accounts for a heuristic h as fol-
lows. Two nodes n1 and n2 in S(I, b) have the same type
if f(n1) = f(n2) and if n1 and n2 occur at the same level
of S. SS samples S and returns a set A of representative-
weight pairs, with one such pair for every unique type seen
during sampling. In the pair 〈n,w〉 in A for type t ∈ T , n is
the unique node of type t that was expanded during search
and w is an estimate of the number of nodes of type t in S.
Since SS is non-deterministic, every run of the algorithm can
generate a different set A. We call each run of SS a probe.
We refer the reader to SS’s original paper (Chen 1992) for
details.

In our pattern selection algorithm we run multiple
SS probes to generate a collection of vectors C =
{A1, A2, · · · , Am}. A vector AU is created from C by com-
bining all representative-weight pairs in C. For each unique
type t encountered in C we add to AU a representative pair
〈n, w̄〉 where n is selected at random from all nodes in C
of type t, and w̄ is the average w-value of all nodes in C of
type t. Each entry in AU represents SS’s prediction for the
number of nodes of a given type in the search tree.

We run SS with a time limit of 20 seconds and a space
limit of 20,000 entries in the AU structure. SS performs
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1,000 probes with b = h(I), where h is CPC’s current
heuristic function. If SS completes all 1,000 probes without
violating the time and space limits, we increase b by 20%
and run another 1,000 probes. The process is repeated until
reaching either the time or the space limits. The AU struc-
ture is built from the A vectors collected in all probes.

Since our pattern selection approach needs to test multiple
heuristics, we run SS once using a type system T defined by
CPC’s current heuristic and store AU in memory. Then, Ĵ is
computed for a newly created heuristic h′ by iterating over
all representative node-weights 〈n, w̄〉 in AU and summing
the w̄-values for which h′(n) + g(n) ≤ b, where b is the
largest value used for probing with SS while building the
AU structure; this sum is our Ĵ for h′.

Adaptable Pattern Collection Generation
This section is a summary of the original papers, included
for completeness.

Algorithm 1 is a high-level overview of the search CPC
performs in the pattern collection space. CPC receives as
input a planning task∇, a base heuristic hbase (which could
be the h0 heuristic, i.e., a heuristic that returns zero to all
states in the state space), time and memory limits, t and m,
respectively, that specify when to stop running CPC. CPC
also receives another time limit, tstag , for deciding when the
parameters of CPC’s search must be readjusted. Smin and
Smax specify the minimum and maximum sizes of the PDBs
constructed. We use zero-one cost partitioning on each pat-
tern collection P so that its PDBs are additive. Once CPC
returns a set of pattern collections Psel , we use the canon-
ical heuristic function (Haslum et al. 2007) to combine all
the patterns in Psel into a heuristic function.

CPC creates pattern collections through calls of the func-
tion BINPACKINGUCB (see line 5), which we explain in
Section . Once a pattern collection P is created, CPC eval-
uates its quality with SS (see line 8), which estimates the
running time of A∗ using a heuristic composed of the pat-
terns already selected by CPC, Psel , added to the new P .
If SS estimates that A∗ solves ∇ faster with a heuristic cre-
ated from the set of pattern collections Psel ∪ P than with a
heuristic created from Psel , CPC adds P to Psel (see line 9).
Whenever CPC adds a pattern collection P to Psel , it per-
forms a local search by applying a mutation operator to P
(see line 7), trying to create other similar and helpful pat-
tern collections (the mutation operator is explained in Sec-
tion ). If SS estimates that P does not help reducing A∗’s
running time, then CPC creates a new P through another
BINPACKINGUCB function call in its next iteration.

The first time EVALUATE-SS is called, CPC runs SS us-
ing hbase as its type system to create a vector AU that is
used to produce estimates of the A∗ running time. Whenever
a call to EVALUATE-SS returns true, meaning that P helps
reducing A∗’s running time, CPC discards AU and runs SS
again with the heuristic constructed from Psel ∪ P as its
type system to generate a new AU . The intuition behind re-
running SS whenever a complementary pattern collection is
found is to allow SS to explore parts of the search tree that
were not explored in previous runs. Initially, the heuristic

Algorithm 1 Complementary PDBs Creation

Require: Planning task ∇, base heuristic hbase, time and
memory limits t and m respectively, stagnation time
tstag , minimum/maximum PDB size Smin , Smax .

Ensure: Selected set of pattern collections Psel

1: Psel ← ∅ // Psel is a set of pattern collections
2: P ← ∅ // P is a pattern collection
3: while time t or memory m limits are not exceeded do
4: if P = ∅ then
5: P ← BINPACKINGUCB(∇,Smin ,Smax )
6: else
7: P ← MUTATION(P)
8: if EVALUATE-SS(Psel ∪ P) then
9: Psel ← Psel ∪ P

10: else
11: P ← ∅
12: if (time since a P is added to Psel ) > Tstag then
13: adjust Smin ,Smax

14: return Psel

used in SS’s sampling tend to be weak, and many of the
states in the AU vector SS produces will not be expanded by
A∗ after the new P is added to Psel . By running SS when-
ever a better heuristic is constructed, one allows SS to also
prune such nodes and focus its sampling on nodes that the
current heuristic is not able to prune.

Bin-Packing Algorithms
In this section we describe the methods we consider for gen-
erating candidate pattern collections.

Regular Bin-Packing (RBP) We adapt the genetic algo-
rithm method introduced by Edelkamp (2006) for selecting
a collection of patterns. Edelkamp’s method, which we call
Regular Bin-Packing (RBP), generates an initial pattern col-
lection P as follows. RBP iteratively selects a unique and
random variable v from V and adds it to a subset B of vari-
ables, called “bin”, that is initially empty. Once a PDB con-
structed from the subset of variables in B exceeds a size
limit M , RBP starts adding the randomly selected variables
to another bin. This process continues until all variables
from V have been added to a bin. Note that since RBP
selects unique variables, the bins represent a collection of
disjoint patterns.

Once the pattern collection P is generated, RBP iterates
through each pattern p inP and removes from p any variable
not causally related to other variables in p (Helmert 2004).

Causal Bin-Packing (CBP) Our CBP approach differs
from RBP only in the way it selects the variables to be added
to the bins. Instead of choosing them randomly as is done
in RBP, CBP selects only the first variable of each bin ran-
domly and then only adds to a bin B variables which are
causally related to the variables already in B. In case there
are multiple causally related variables to be added, CBP
chooses one at random.

We observed empirically in (Franco et al. 2017) that RBP
tends to generate pattern collections that result in PDBs of
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similar sizes, and that CBP tends to generate pattern collec-
tions that result in PDBs of various sizes. This is because
RBP removes causally unrelated variables after the variable
selection is done. By contrast, CBP greedily selects causally
related variables as the patterns are created. As a result, usu-
ally the first pattern created by CBP will have more variables
than all the other patterns created.

Combination of Bin-Packing Approaches with UCB1
UCB1 is a version of UCB whose regret grows logarithmi-
cally as a function of the number of actions take. We used
this algorithm to choose in situ how frequently to use either
of both pattern generation algorithms.

We used the UCB1 formula (Auer 2002), x̄j +
√

2 lnn
nj

,
to decide which arm (algorithm) to use next. Here, x̄j is the
average reward received by algorithm j, n is the total num-
ber of trials made (i.e., calls to a bin-packing algorithm), and
nj is the number of times algorithm j was called. We artifi-
cially initialize x̄j to 10 for all j to ensure that all algorithms
are tested a few times before UCB1 can express a strong
commitment to a particular option. This helps to reduce
the chances of UCB1’s selection being unduly influenced
by the stochastic nature of the bin-packing approaches. A
bin-packing algorithm receives a reward of +1 if it provides
a P that is able to reduce the T̂ -value as estimated by SS;
the reward is 0 otherwise.

In (Franco et al. 2017) we performed a systematic exper-
iment on the optimal STRIPS benchmark suite distributed
with the FD (Helmert 2006). The coverage results for the
two approaches showed using UCB1 to combine both ap-
proaches was significantly better than using either one or
simply choosing them with equal probability. See the origi-
nal paper for a more detailed discussion.

Mutation Operator
CPC performs mutations on a given pattern collection P
whenever P is deemed as promising by SS. That is, if SS
estimates that P will not reduce the A∗ running time, CPC
sets P to ∅, and in the next iteration of CPC’s while loop
another P is created with our UCB approach. On the other
hand, if SS predicts that P is able to reduce A∗’s running
time, then CPC adds P to Psel and, in the next iteration of
its while loop, it applies a mutation operator to P , trying to
create another pattern collection that might further reduce
A∗’s running time. More details in the original paper.

Dynamic Parameter Adjustment
Some of the instances benefit from a large number of small
PDBs, while others require a small number of large PDBs.
Thus, instead of fixing the PDB size throughout CPC’s pat-
tern selection search, we adjust the size of the PDBs, M , to
be constructed during search.

To be specific, if after tstag seconds we are unable to add
a new complementary pattern collection to Psel , we increase
the size M of the PDBs we generate. The intuition is that if
our search procedure does not find complementary patterns
for the current PDB size, M , then we assume that this par-
ticular planning problem might benefit from larger PDBs.

In the original paper, it was shown that a dynamic range of
PDB sizes worked better for our benchmark tests compared
to using any of multiple a priori fixed sizes.

Empirically-based Choices
1. We used CPC-S-P configuration from the original paper,

because it had the overall best results.

2. We only used symbolic PDBs. (Franco et al. 2017) be-
cause explicit PDBs did not support conditional effects,
while symbolic PDBs (as implemented) do. (Franco et al.
2017) did not include any domains with conditional ef-
fects. Secondly, symbolic PDBs performed significantly
better overall for the paper’s experiments.2

3. We switched to a 64 bits build. After adjusting the size
and the maximum number of nodes on the frontier for
symbolic PDBs, it was found that more problems were
solved, when using the IPC 2018 limits. Both limits were
doubled. Limiting the maximum number of nodes in the
BDDs frontiers is an implementation failsafe to ensure the
memory and time limits are respected.

Results
Following is an ablation-type study were we analyze which
components worked best (Table 1). We used the New
Zealand Nesi Cluster. Domain names have been abbrevi-
ated to either the first 3 letters or the first letter of each word
for spaces saving purposes.

Table 1 shows that the combination of bin packed methods
(CBP, RBP), aided by an initial perimeter PDB, and regu-
lated by UCB1 (Comp2/Reg) was better than any of the indi-
vidual methods on their own. This confirms our expectations
and has a similar behaviour as in (Franco et al. 2017) which
used all previous IPC domains (seq-opt). Dropping the ini-
tial perimeter PDB reduced the overall number of solved
problems by 10. Interestingly there was only one domain
were the perimeter PDB really helped albeit quite signifi-
cantly, we would have solved approximately 11 less prob-
lems for the Petri Net Alignment (PNA) without the perime-
ter PDB. Otherwise, the impact of the Perimeter PDB is min-
imal. In general, the Perimeter PDB works well on domains
where getting a good heuristic value is difficult or not that
important, e.g. Openstacks. Additionally, if no perimeter is
used and we only generate patterns using the RBP generator,
6 fewer problems were solved, the biggest effect is in Snake
(Sna) where we solved 3 fewer problems. On the other hand,
when only using CBP as a pattern generator, results in no
problems lost for Snake but solving 4 fewer Agricola (Agr)
and Termes (Ter) problems. However, from previous exper-
iments do note that whether CBP, RBP or a combination of
both is the best option is very much dependent on the do-
main. There is no obvious method to predict a priori which
bin packing method is best for the current problem.

2Note that explicit PDBS can outperform symbolic PDBs on
some domains. The reason is that while symbolic PDBs can deal
with larger abstractions, they are also more expensive to evaluate.
For those domains where it is easy to find a large amount of good
quality complementary patterns, explicit can be the better option.
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Table 1: Coverage of Complenmentary2 Modules. Reg stands for all components active. NoPer stands for perimeter PDB inactivated. RBP
and CBP also have Perimeter inactive.

Domain Agr Cal DN Nur OSS PNA Set Sna Spi Ter Total
Comp2/Reg 6 12 13 12 12 19 9 14 11 16 124

Comp2/NoPer 6 12 14 12 12 8 9 14 11 16 114
Comp2/RBP 5 12 13 12 12 7 9 11 13 14 108
Comp2/CBP 2 12 13 12 12 8 9 14 12 12 106

Competition result bellow included for Completeness
Comp2 6 12 12 12 13 18 9 14 12 16 124

Concluding Remarks
The competition results were quite good for optimal plan-
ning, where we were the runners up (winner was 126 prob-
lems while we solved 124). We were also the best non-
portfolio approach.

Future research avenues, as mentioned in (Franco et al.
2017), are using more (or improved) pattern generator meth-
ods, keep working on improving in situ selection of pattern
generators, and analyzing the impact of using online PDBs
for selection purposes.
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Abstract

This abstract describes the general behavior of MSP
(Meta-Search Planner) for the IPC (International Plan-
ning Competition) 2018, optimal track. MSP is a meta-
reasoning system that searches through the space of
planners, representations and heuristics on a problem-
by-problem basis. Given a planning problem, MSP per-
foms two phases: meta-search phase and problem solv-
ing phase. The meta-search phase is a search process for
selecting one combination suitable for optimally solv-
ing the specific problem. The solving problem phase is
basically a call to the selected planner with the other
elements of the selected combination.

Introduction
The Meta-Search Planner (MSP) presented at the 2018 IPC
is based on an approach for optimal planning described pre-
viously in (Fuentetaja et al. 2018). Given a problem and
domain, MSP searches through the space of representation
changes and heuristics to find a good combination to use
in solving the problem. The underlying ideas are the fol-
lowing: (1) it is seldom the case that a single representa-
tion or heuristic is best over all problems within a domain;
(2) the choice of representations and heuristics can be mod-
eled as a meta-level search through a space of combina-
tions of representations and heuristics; and (3) the decision
on which representation change and set of heuristics to use
can be made on-line and on a problem by problem basis.
The main differences between MSP and other methods such
as portfolios (Cenamor, de la Rosa, and Fernández 2016;
Helmert, Röger, and Karpas 2011; Gerevini, Saetti, and Val-
lati 2009; Núñez, Borrajo, and Linares-López 2015) are: (1)
MSP does not perform a learning step; (2) porfolios do not
usually focus on changing the representation of the input do-
main/problem; and (3) they frequently do not adapt the port-
folio to the specific problem.

An important aspect of MSP is that it allows representa-
tion changes applied to the input representation. Represen-
tation changes have been much less studied in automated
planning than other aspects such as heuristics and search al-
gorithms. However, the same problem can be defined in dif-

Copyright c© 2018, Association for the Advancement of Artificial
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ferent ways in PDDL (Planning Domain Description Lan-
guage) (Ghallab et al. 1998), the standard language for com-
pactly representing planning tasks. Each particular defini-
tion of a planning problem may have an impact on the
planner performance. In fact, given the same combination
of heuristics and search methods some representations will
make it harder to solve the problem while others will facili-
tate its solution (Howe et al. 1999; Howe and Dahlman 2002;
Riddle et al. 2016; Fuentetaja and de la Rosa 2016). Also,
the best representation may not be the same for different
problems within a domain.

Related also to the representation is the fact that most
current planners transform the PDDL representation into
more efficient internal representations such as propositional
logic (Hoffmann and Nebel 2001) or SAS+ (Bäckström and
Nebel 1995). Thus, changes of representation can be per-
formed either at the PDDL level, or in the procedure(s) in-
volved in the transformation. For instance, in Fast Down-
ward (FD) (Helmert 2006), one of the most influential plan-
ning platforms, these procedures are the translation and pre-
processing steps to generate a SAS+ representation. In SAT
planning, the impact of different encodings has also been
examined (Kautz and Selman 1992; Rintanen 2012).

In general, MSP can change the representation using var-
ious techniques as black-boxes. They range from simple
ones like changing the order of actions in the PDDL do-
main file, à la (Vallati et al. 2015), to more complex ones
like Baggy (Riddle et al. 2016), that reformulates problems
into a bagged representation. It can also vary the procedure
to obtain the internal representation.

MSP can use one or more underlying planners. The meta-
search described in the original publication (Fuentetaja et al.
2018) uses the RIDA∗ planner (Barley, Franco, and Riddle
2014) for several purposes: evaluating meta-search states;
selecting the set of appropiate heuristics for a meta-search
state; and as the planner for solving the problem. The version
presented at the IPC 2018 does not use RIDA∗. Instead, it in-
cludes two planners: Optimal Fast Downward (FD) (Helmert
2006) and SYMBA∗ (Torralba, Linares-López, and Borrajo
2016). Thus, the evaluation of meta-search nodes and the
selection of heuristics at the IPC 2018 is different from that
described in the original article. Specifically, the evaluation
of nodes is perfomed by a sampling process using the men-
tioned planners. The heuristics are included in the meta-
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search states, so that they are evaluated together with the
other state features by an evaluation function that is also dif-
ferent. The next sections describe the MSP version for IPC
2018 in more detail.

Meta-search
We use the standard definition of a planning task as Π =
{F,A, I,G}. F is a set of propositions, A is a set of actions,
I ⊆ F defines the initial state and G ⊆ F defines the goals.
A planner takes as input a planning task and returns a plan
π = 〈a1, . . . , an〉 such that if applied to the initial state I ,
it will achieve the goals. That is, it will generate a state sn
after applying actions in π to I such that G ⊆ sn. Actions
have a cost, c(a),∀a ∈ A. The cost of a plan is c(π) =∑
ai∈π c(ai). An optimal plan is one with minimum cost.
MSP can be described in terms of a generic search in a

meta-search space followed by a call to a planner. It can
be formally defined in terms of the meta-search state space
(MS), meta-search operators (MO), and the problem solv-
ing method: the search algorithm and the heuristics.

We will denote as Re the set of representation changes
that generate a new PDDL representation, referred to as ex-
ternal representation changes. The changes that transform a
PDDL representation into an internal one (such as SAS+)
are referred to asRi, the internal representation changes.Ri
is planner specific.

The input to MSP is a planning task described in terms of a
domainD, and a problem P , both described in PDDL. Since
MSP performs search in the space of representations, plan-
ners and heuristics, it also receives as inputs the set of exter-
nal representation change operators that can be applied, Re;
the planners, Pl; the set of internal representation changes,
Ri, and heuristics, H, that every planner can use; and the
time bound, T , represents the maximum time to solve the
problem.

MSP is given the maximum time it can use to solve a prob-
lem. Within that time limit, it must use some of that time to
select a good combination of representation changes, plan-
ners and heuristics, and use the remainder to apply that se-
lection to solve the problem. This means that MSP must bal-
ance the benefits of spending more time in the meta-search
against those of spending more time actually solving the
problem. Picking the right balance is a difficult decision.
Currently, MSP just splits the maximum time, T , in half.
While the planner is guaranteed at least half of the total time,
it will end up with more time whenever the selection process
takes less than half. In other words, the planner will have a
time limit of T - consumedTime, where consumedTime is the
actual time consumed by the meta search.

Algorithm 1 shows a high level description of MSP that
includes the call to meta-search and a call to the planner with
the output of the meta-search (and the remaining time). The
meta-search requires three time limits: one for the evaluation
of states, another one for the meta-search and the other as an
estimate of the time to be given later to the planner. The state
evaluation time has been fixed to 75 seconds. For the other
two, we assume T/2.

In the following, end refers to the best meta-search state
found. The output of the meta-search contains: the final se-

Algorithm 1 MSP(D,P,Re, P l, Ri,H, TE , T )
Inputs: domain D, problem P , PDDL rep. changes Re, planners

Pl, internal rep. changes Ri and set of heuristics H for every
planner, estimation time bound TE , time bound T

Outputs: plan
1: (Dend, P end, plend, rend

i , Hend, π)←
2: META-SEARCH(D,P,Re, P l, Ri,H, TE , T/2, T/2)
3: if π = ∅ then
4: T ← T− consumedTime
5: plan← plend(Dend, P end, rend

i , Hend, T )
6: else
7: plan← π
8: return plan

lected PDDL representation of the domain and problem,
Dend and P end; the selected planner plend, rendi , the inter-
nal representation, and Hend, the set of heuristics. The out-
put also contains a plan π that will be empty if the problem
is not solved during meta-search. In that case, the planner is
called with the final domain and problem, the selected con-
figuration and the remaining time. These components will
be explained in detail in the following subsections.

Representation Changes
The general representation changes that can be included
in MSP are of two types: external (Re) and internal (Ri).
Each external representation change operates at the PDDL
level and generates a new PDDL domain, D, and prob-
lem, P . It can be defined as a function that operates in
the space of valid PDDL descriptions, P (each element of
P is a pair (D,P )): ∀re ∈ Re, re : P → P . Given
that they operate over P , the PDDL representation changes
can be applied in sequence. We define the composition of
two changes σ〈r1e ,r2e〉 over a pair (D,P ) in the usual way:
σ〈r1e ,r2e〉(D,P ) = (r1e ◦ r2e)(D,P ) = r2e(r

1
e(D,P )). The

composition of these functions is not necessarily symmet-
ric, so the order in which changes are performed is relevant.

For the internal representation, we are restricted to trans-
formations into SAS+. If S is the space of all SAS+ de-
scriptions, ∀ri ∈ Ri, ri : P → S. In order to define each ri,
there are usually two processes applied consecutively to the
original PDDL representation to generate the internal one
in SAS+. First, there is a translation process that generates
an initial SAS+ representation; and second, there is a pre-
processing step that generates an optimized SAS+. Our set
of internal representation changes Ri contains pairs (t, p), a
translator method t and a pre-processor method p.

States of the Meta-search
The meta-search states contain all the necessary information
regarding problem representation and the set of heuristics
used for solving the problem. We define meta-search states
as follows:

Definition 1 (meta-search state) A meta-search state s is
a tuple s = (〈r1e , . . . , rne 〉, Dn, Pn, pl, ri, H), where
〈r1e , . . . , rne 〉, rie ∈ Re is a sequence of external represen-
tation changes; Dn and Pn are the resulting domain and
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problem generated by applying this sequence to the orig-
inal domain and problem, (Dn, Pn) = σ〈r1e ,...,rne 〉(D,P );
pl ∈ Pl is a planner; ri ∈ Ri is an internal representation
change; and H ⊆ H is a subset of heuristics. 1

Regarding the PDDL representation, the states contain
both the sequence of representation changes and the ob-
tained domain and problem. As we will explain later, the se-
lected changes can affect the applicability of operators (e.g.,
some representation changes can only be applied once).

With relation to the internal representation, every state of
the meta-search contains one translator and pre-processor
pair ri = (t, p). Therefore, meta-search states define im-
plicitly a SAS+ representation, that can be obtained by ap-
plying the internal representation procedure to the resulting
domain and problem: ri(Dn, Pn). This involves executing
first the translator t and then the pre-processor p on the plan-
ning task defined byDn and Pn. While we could implement
all changes done at the PDDL level (Re) as changes at the
SAS+ representation, we keep both kinds of changes inde-
pendent. On one hand, changes are more easily performed at
the PDDL level than at the SAS+ level. On the other hand,
and more importantly, keeping these changes at the PDDL
level could allow to use other PDDL-based planners that do
not work with SAS+ representations.

The subset of heuristics H ⊆ H represents the selected
heuristic for solving the task, defined as the maximum value
over all the heuristics inH . Since we are doing optimal plan-
ning all heuristics inH should be admissible.

The meta-search state space is composed of all the pos-
sible combinations of sequences of external representation
changes, a planner, an internal representation change and a
subset of heuristics. We only consider the internal represen-
tation change and heuristics which are accepted by the cho-
sen planner.

Given that this meta-search state space can be huge and
that it will be traversed at problem solving time (on-line), the
challenge consists of how to perform the search efficiently.

The initial meta-search state is (∅, D, P, pl, ri, H). It con-
tains the empty sequence, the original domain and problem,
and default values for pl, ri, and H .

Meta-search Operators
Given a state s = (〈r1e , . . . , rne 〉, Dn, Pn, pl, ri, H) of the
meta-search, there are four types of modifications that can be
applied to generate a new state: adding an additional change
to the sequence of external changes; selecting a (possibly
different) planner, selecting a (possibly different) internal
representation change; and selecting a (possibly different)
subset of heuristics. Thus, we define meta-search operators
as follows.
Definition 2 (meta-search operator) A meta-search oper-
ator is a tuple mo = (more ,mopl,mori ,moH), where the
first component defines an external representation change
re ∈ Re to be added to the sequence, the second component
defines a planner pl ∈ Pl, the third component defines an
internal representation change ri ∈ Ri(pl) to be used, and
the last one defines a selection of heuristics H ⊆ H(pl).

1n refers just to the number of elements in the sequence.

The operator mo = (more = rn+1
e ,mopl = pl′,mori =

r′i,moH = H ′) applied to the state s generates a new state
s′ = (〈r1e , . . . , rne , rn+1

e 〉, Dn+1, Pn+1, pl
′, r′i, H

′), where
Dn+1 and Pn+1 are the domain and problem generated by
the new sequence: (Dn+1, Pn+1) = σ〈r1e ,...,rne ,rn+1

e 〉(D,P ).
pl′ is a planner. The internal (SAS+) representation
to be used by the planner pl′ will be the result of:
r′i(σ〈r1e ,...,rne ,re〉(D,P )). All three, pl′, r′i and H ′, can take
the same value in consecutive states.

Regarding the external changes (PDDL representation),
Re, the MSP version presented at the 2018 IPC only consid-
ers baggy-all and neutral. baggy-all applies bagging to all
types in the domain according to the Baggy technique (Rid-
dle et al. 2016). This technique consists of replacing by
counters all objects of the same type whose name is not rel-
evant. neutral makes no change to the PDDL representation.

As planners we consider FD optimal (Helmert 2006) and
SYMBA∗ (Torralba, Linares-López, and Borrajo 2016).

Regarding the translator and pre-processor pairs (t, p) ∈
Ri we consider the following options. For the FD planner, we
defined one translator and two preprocessors. The translator
is the standard FD translator (Helmert 2006). For the prepro-
cessors the first option is the standard FD pre-processor. The
second one is the h2-based one defined in (Alcázar and Tor-
ralba 2015), that we will refer to as h2. For the SYMBA∗
planner we only consider its standard translator and prepro-
cessor.

Finally, we consider the following heuristics: for FD,
potentials (Seipp, Pommerening, and Helmert 2015), op-
erator counting (Florian Pommerening and Bonet 2014),
ipdb (Haslum et al. 2007), lmcut (Helmert and Domshlak
2009) and blind; for SYMBA∗ only its default heuristic. For
the version presented at the competition the set of heuristics
of meta-search states contains just one element. Thus, only
one heuristic is selected at each meta-search node.

As an example, a meta-search operator can be more =
baggy-all, mopl = FD, mori = (t = FD+, p = FD), and
moH = {potentials} which applies Baggy to produce a new
PDDL representation, selects the planner FD, transforms that
into SAS+ using the FD+ translator and the standard FD pre-
processor and selects the heuristic potentials.

Meta-search Search Technique
MSP performs greedy search with a technique similar to
enforced-hill-climbing (Hoffmann and Nebel 2001). Algo-
rithm 2 shows a high-level description of the meta-search.
It takes as input a domain D, a problem P , the PDDL rep-
resentation changes Re, the planners Pl, the internal repre-
sentation changes Ri, the set of heuristics H, a meta-search
time bound Tm, which will be the maximum time the whole
meta-search process can take and a planning time bound TP ,
which is the minimum time that the meta-search process
assumes the planner will have to solve the problem. The
META-SEARCH returns the configuration of the best meta-
search state (Dend, P end, plend, rendi , Hend, π).

META-SEARCH first generates the operators,MO, given
the possible representation changes Re and Ri, and builds
the initial state. We start the search with the original do-
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Algorithm 2 META-SEARCH(D,P,Re, P l, Ri,H, TE , Tm, TP )

Inputs: domain D, problem P , PDDL rep. changes Re, Planners
Pl, internal rep. changes Ri, set of heuristics H, estimation
time bound TE , meta-search time bound Tm, planning time
bound TP

Outputs: configuration, ((Dend, P end, plend, rend
i , Hend), π)

1: MO ←GENERATE-OPERATORS(Re, P l, Ri,H)
2: init← (∅, D, P, SymBA∗, (t = SymT, p = SymP), SymH)

3: f, π ← EVALUATE(init,TE)
4: best← init
5: best f ← f
6: succ← SUCCESSORS(init,MO)
7: while Tm not reached and π = ∅ and succ6= ∅ do
8: s← pop(succ)
9: f, π ← EVALUATE(s, TE)

10: if f >best f then
11: best← s
12: best f ← f
13: succ← SUCCESSORS(s,MO)
14: return (best = (Dend, P end, plend, rend

i , Hend), π)

main and problem, and the SYMBA∗ planner together with
its translator, preprocessor and heuristics. Then, the initial
state is evaluated. The EVALUATE function returns an evalu-
ation of the state and a plan π (that will be empty if no plan
is found during evaluation). Then, it generates its succes-
sors (the SUCCESSORS function returns a list of meta-search
states), and starts evaluating each successor in order. As soon
as it finds a state with a better evaluation than its parent’s, it
stops evaluating the current set of successors, and continues
the search, generating the successors of that state. MSP fin-
ishes the meta-search if: the time bound is reached; a plan is
found while evaluating a meta-search state; or if the list of
successors is empty (it did not find a better meta-search state
than its parent at any level).

An important decision is on the maximum time EVALU-
ATE will be allowed to evaluate a meta-search state, TE . If
EVALUATE has too little time, the quality of its answers will
be poor. If it has too much time, then the meta-search will
not be able to search very many meta-search states in this
space.

In order to avoid visiting some uninteresting or impossi-
ble combinations, we prune any state s when any of the fol-
lowing conditions apply: the same meta-search operator was
applied in any ancestor of s; the last re is Baggy, and any an-
cestor of s has already applied Baggy in any form; the last
re is Baggy, and any previously evaluated state in the search
tree has already tried to apply Baggy and the problem could
not be bagged.

Meta-Search State Evaluation
To evaluate a meta-search state, s, the meta-search calls
EVALUATE(s, TE). Algorithm 3 shows its pseudo-code. s is
the state being evaluated and TE is the evaluation time limit.
Given s and TE , EVALUATE returns a reasonable estimate of
the “goodness” of s within the time bound TE .

The evaluation of meta-search states is a sampling pro-
cess that executes the planner defined in the corresponding
state until reaching the estimation timeout. Our measure of

Algorithm 3 EVALUATE(s, TE)
Inputs: meta-search state s, evaluation time bound TE

Outputs: evaluation f , plan π
1: (〈r1e , . . . , rne 〉, Dn, Pn, pl, ri, H)← s
2: S ← ri(Dn, Pn)
3: max flimit, π ← pl(S, TE , H)
4: return f = max flimit, π

the goodness for meta-search states is how far the search
went when sampling; that is, the maximum f-level of the ex-
panded nodes. The basic idea is that the configuration that
achieves a higher f-level is better than one that reaches a
lower f-level. If a plan is found during the evaluation, that
plan is also returned.

Planner
The meta-search algorithm returns the expected best com-
bination of representation, translation, and pre-processing
techniques, plus selected heuristics and possibly a plan. If
the meta-search finds a solution plan while evaluating any
state, MSP just returns it. Otherwise, the planner is executed
with the new domain and problem definitions, as well as the
selected translator, pre-processor and heuristic.

If the representation chosen was a bagged representation,
then the solution will need to be translated back into the
original representation as well. Luckily this is a very fast
process, linear in the size of the solution path.
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Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-
ning. In Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS), 2–6.
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Abstract

DecStar extends Fast Downward by Star-Topology Decou-
pling (STD), a technique recently introduced in classical
planning. It exploits independence between components of
a planning task to reduce the size of the state-space repre-
sentation. Partitioning the state variables into components,
such that the interaction between these takes the form of a
star topology, decoupled search only searches over action se-
quences affecting the center component of the topology, and
enumerates reachable assignments to each leaf component,
separately. This can lead to an exponential reduction in the
search-space representation size. It is not always easy to find
a partitioning for a given planning task, though, so we extend
STD by a fallback option, that runs standard search whenever
no (good) partitioning could be found.

Introduction
Star-Topology Decoupling (STD) is a recently introduced
method to reduce the representation size of search spaces
(Gnad and Hoffmann 2015; Gnad, Hoffmann, and Domsh-
lak 2015; Gnad and Hoffmann 2018). By exploiting the
structure of the problem within the search – as opposed to
doing that within a heuristic function guiding the search –
the size of the decoupled state space can be exponentially
smaller than that of the standard state space. Decoupled
search achieves that by partitioning the task into several
components, called factors, trying to identify a star topol-
ogy, with a single center factor that interacts with multiple
leaf factors. By enforcing such a star structure, and thereby
restricting the dependencies between the components, de-
coupled search has proven to be very efficient and competi-
tive to state-of-the-art planners.

The performance of STD is highly influenced by the out-
come of the factoring process, i. e., the process of find-
ing a partitioning of the state variables. Just, how to find
a good factoring, and what qualifies a factoring as being
good? These questions have partially been answered by
Gnad, Poser, and Hoffmann (2017), who devised two al-
gorithms that can detect star topologies on a wide range of
planning domains. Still, the proposed algorithms can fail
to find a factoring, or succeed, but return a factoring with
undesired properties, e. g. large leaf components that incur
a prohibitive runtime overhead when generating new search

states. In this case, we simply run standard search, instead 1.
When running STD, we enable some of the extensions

that have been developed, namely partial-order reduction
(POR) (Gnad, Wehrle, and Hoffmann 2016), symmetry
breaking (Gnad et al. 2017), and dominance pruning (Tor-
ralba et al. 2016). POR via strong stubborn sets is a
technique that is well-known in standard search and origi-
nates from the model checking community (Valmari 1989;
Alkhazraji et al. 2012; Wehrle and Helmert 2012; 2014).
Symmetry breaking has recently been introduced for de-
coupled search, too. It is a widely known approach across
many areas of computer science (e. g. (Starke 1991; Emer-
son and Sistla 1996; Fox and Long 1999; Rintanen 2003;
Pochter, Zohar, and Rosenschein 2011; Domshlak, Katz,
and Shleyfman 2012)). Dominance pruning identifies states
that can be safely discarded, without affecting completeness
(and optimality). POR and symmetry breaking can be used
in any given factoring type 2, dominance pruning, however,
is only applicable if the generated factoring takes the form
of a fork, i. e., the leaves have dependencies on the center,
but not vice versa.

In the fallback case, i. e., when no good factoring could
be detected and we run standard search, we make use
of the variety of techniques that are implemented in Fast
Downward (Helmert 2006). In the optimal and bounded-
cost tracks, this includes a pattern database heuristic gener-
ated using a genetic algorithm (Edelkamp 2006), the LM-
cut heuristic (Helmert and Domshlak 2009), a Merge-&-
Shrink heuristic (Helmert, Haslum, and Hoffmann 2007;
Helmert et al. 2014), and a landmark-count heuristic (Por-
teous, Sebastia, and Hoffmann 2001; Richter, Helmert, and
Westphal 2008). In the agile and satisficing tracks, we
mostly use the hFF heuristic (Hoffmann and Nebel 2001)
and a search configuration similar to the LAMA planning
system (Richter, Westphal, and Helmert 2011).

In all tracks, we extend the standard preprocessor of Fast
Downward by the h2-based task simplification of Alcázar
and Torralba (2015), which removes irrelevant and unreach-
able facts and actions from the task.

1This limitation is merely due to the factoring strategies that we
use to identify suitable partitionings. In general, every task has a
star topology and can be tackled by decoupled search.

2We use a so-far unpublished extension of strong stubborn sets
that supports general star factorings
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Preliminaries
We use a finite-domain state variable formalization (FDR) of
planning (e. g. (Bäckström and Nebel 1995; Helmert 2006)),
where a planning task is a quadruple Π = 〈V,A, I,G〉. V is
a set of state variables, where each v ∈ V is associated with
a finite domain D(v). We identify (partial) variable assign-
ments with sets of variable/value pairs. A complete assign-
ment to V is a state. I is the initial state, and the goal G is
a partial assignment to V . A is a finite set of actions. Each
action a ∈ A is a triple 〈pre(a), eff(a), cost(a)〉 where the
precondition pre(a) and effect eff(a) are partial assignments
to V , and cost(a) is a’s non-negative cost.

We use the usual FDR semantics. The planning prob-
lem is to decide if there exists a sequence of actions that
transforms the initial state I of Π to a state that satisfies the
goal condition G. In the optimal and bounded-cost tracks of
the competition, we are looking for an action sequence with
minimal, respectively bounded, summed-up cost.

Decoupled Search
We perform decoupled search like introduced by Gnad and
Hoffmann (2018), in its integration in the Fast Downward
planning system (Helmert 2006). We use the improved
fork and inverted-fork, as well as the incident-arcs factor-
ing methods from Gnad, Poser, and Hoffmann (2017). The
outcome of the factoring process is a partitioning F of the
variables of the planning task Π, such that |F| > 1 and
there exists FC ∈ F such that, for every action a where
V(eff(a))∩FC = ∅, there exists F ∈ F with V(eff(a)) ⊆ F
and V(pre(a)) ⊆ F ∪ FC . We then call F a star factoring,
with center factor FC and leaf factors FL := F \ {FC}.

Given a factoring F , decoupled search is performed as
follows: The search will only branch over center actions,
i. e., those actions affecting (with an effect on) a variable in
FC . Along such a path of center actions πC , for each leaf
factor FL, the search maintains a set of leaf paths, i. e., ac-
tions only affecting variables of FL, that comply with πC .
Intuitively, for a leaf path πL to comply with a center path
πC , it must be possible to embed πL into πC into an overall
action sequence π, such that π is a valid path in the projec-
tion of the planning task Π onto FC ∪ FL. A decoupled
state corresponds to an end state of such a center action se-
quence. The main advantage over standard search originates
from a decoupled state being able to represent exponentially
many explicit states, avoiding their enumeration. A decou-
pled state can “contain” many explicit states, because by in-
stantiating the center with a center action sequence, the leaf
factors are conditionally independent. Thus, the more leaves
in the factoring, the more explicit states can potentially be
represented by a single decoupled state.

We will next describe a couple of extensions that have
been developed for decoupled search and that we use in
some of our configurations.

Symmetry Breaking in Decoupled Search
Symmetry Breaking has a long tradition in planning and
many other sub-areas of computer science (Starke 1991;
Emerson and Sistla 1996; Fox and Long 1999; Rintanen

2003; Pochter, Zohar, and Rosenschein 2011; Domshlak,
Katz, and Shleyfman 2012). We use an extension to decou-
pled search, introduced by Gnad et al. (2017), which is build
on orbit search (Domshlak, Katz, and Shleyfman 2015;
Wehrle et al. 2015). An orbit is a set of states all of which are
symmetric to each other. In the search, each state is mapped
to a canonical representative of its orbit. In case another state
from the same orbit has already been generated (with lower
g-cost), the new state can safely be pruned. Decoupled orbit
search extends this concept to decoupled states.

Decoupled Strong Stubborn Sets
Partial-order reduction is a well-known technique that re-
duces the size of the search space by pruning transitions
that correspond to different permutations of actions (Val-
mari 1989; Godefroid and Wolper 1991; Edelkamp, Leue,
and Lluch-Lafuente 2004; Alkhazraji et al. 2012; Wehrle et
al. 2013; Wehrle and Helmert 2014). A variant of strong
stubborn sets, decoupled strong stubborn sets (DSSS), has
also been introduced for decoupled search. We will employ
DSSS in the optimal and bounded-cost tracks. For fork fac-
torings, we use DSSS as defined by Gnad, Wehrle, and Hoff-
mann (2016). For non-fork factorings, we use a yet unpub-
lished extension that is able to handle arbitrary factorings.
To avoid the runtime overhead when DSSS are not effective,
we implemented a “safety belt” mechanism, that disables
DSSS if after the first 1000 expansions less than 20% of the
transitions have been pruned.

Decoupled Dominance Pruning
Another extension that has recently been introduced is domi-
nance pruning (Torralba et al. 2016), where decoupled states
that are dominated by other – already generated – states
can be safely discarded. We only deploy a very lightweight
pruning method, namely frontier pruning. The standard way
of performing duplicate checking in decoupled search can
already detect certain forms of dominance, in particular if
two decoupled states have the same center state and all leaf
states reachable in one state are (at most as costly) also
reachable in the other. Frontier pruning improves this by
only comparing a subset of the reached leaf states, those that
can possibly make so far unreached leaf states available. It
has originally been developed for optimal planning, but can
be easily adapted to become more efficient, when optimal
solutions do not matter, by replacing the real cost of reach-
ing a leaf state by 0, if a state has been reached at any cost.

Additionally, we also employ a leaf simulation, originally
proposed by Torralba and Kissmann (2015), to remove irrel-
evant leaf states and leaf actions. In some domains, this can
tremendously reduce the size of the leaf state spaces.

As indicated before, the techniques described in this sub-
section are only applicable if F is a fork factoring.

Implementation & Configurations
Decoupled Search has been implemented as an extension of
the Fast Downward (FD) planning system (Helmert 2006).
By changing the low-level state representation, many of
FD’s built-in algorithms and functionality can be used with
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only minor adaptations. Of particular interest for the Dec-
Star planner are the A∗ search algorithm, and the hLM-cut

heuristic (Helmert and Domshlak 2009) for optimal, and
bounded-cost planning. In the satisficing and agile tracks,
we run greedy best-first search (GBFS) using the hFF heuris-
tic (Hoffmann and Nebel 2001). The search algorithms and
heuristics can be adapted to decoupled search using a com-
pilation defined by Gnad and Hoffmann (2018). Our imple-
mentation does not support conditional effects. On top of the
standard FD preprocessor, we perform a relevance analysis
based on h2, to eliminate actions and simplify the planning
task prior to the search (Alcázar and Torralba 2015).

In all tracks of the competition, star-topology decoupling
is the main component of our planner. However, since, as
outline before, our factoring strategies are not guaranteed to
find good task decompositions, we need a fallback method.
Given the implementation of decoupled search in FD, we
can easily make use of the many techniques that FD ships
with. Thus, in the case that no good factoring could be ob-
tained, we run standard search using some heuristics and
pruning methods that are implemented in FD.

We will use the following notation to describe our tech-
niques: the decoupled variant of search algorithm X is de-
noted DX. We denote fork (inverted-fork) factorings by F
(IF), and factorings generated using the incident-arcs algo-
rithm by IA. To combine the power of the factoring strate-
gies, we use a portfolio approach that runs multiple strate-
gies and picks the one with the maximum number of leaf
factors. Further more, we restrict the size for the per-leaf
domain-size product to ensure that the leaf state spaces are
reasonably small and do not incur a prohibitive runtime
overhead when generating new decoupled states. We denote
this size limit by |FL

max| := maxFL∈FL Πv∈FL |D(v)|. If
a fork factoring is detected, we sometimes perform frontier
dominance pruning, denoted FP and reduce the size of the
leaf state spaces removing irrelevant transitions and states
(IP). Decoupled strong stubborn sets will be abbreviated as
DSSS, where we always use the safety belt with a mini-
mum pruning ratio of 20%. In standard search, the use of
strong stubborn sets pruning is denoted SSS. (Decoupled)
orbit search is abbreviated (D)OSS. The use of preferred op-
erator pruning is denoted PO.

In all but the optimal track, we start by ignoring the ac-
tion costs. Costs are ignored altogether in the agile track,
and only re-introduced in the bounded-cost track if no plan
below the cost bound could be found. In the satisficing track,
we re-introduce the real costs upon finding the first plan.

In the following sub-sections, we detail the configurations
employed in each competition track. We provide the search
configurations, as well as the time each of the components
is allotted (in seconds).

Optimal Track
DecStar starts by running decoupled search with a fork fac-
toring with a maximum leaf size of 10 million, if one ex-
ists. In this case, it employs frontier pruning, removes ir-
relevance in the leaves, and performs partial-order reduc-
tion (DSSS). The next component tries all factoring methods
with different size constraints, and prunes states with DSSS

and DOSS. This is the main component running for 15min.
Both decoupled search components use the LM-cut heuris-
tic (Helmert and Domshlak 2009), currently the strongest
admissible heuristic that supports decoupled search.

Search Factoring |FL
max| Heuristic Pruning Runtime

DA∗ F 10M hLM-cut DSSS,FP,IP 100s
DA∗ F/IF/IA 10/10/1M hLM-cut DSSS,DOSS 800s
A∗ - - hLM-cut SSS,OSS 180s
A∗ - - hGA-PDB SSS 180s
A∗ - - hM&S - 180s
A∗ - - hLMc - 180s
A∗ - - blind - 180s

Figure 1: Portfolio configuration in the optimal track. Com-
ponents are launched top to bottom.

In case no matching factoring could be found, or when
decoupled search fails, DecStar is supported by standard
search with different heuristics. If the heuristic does not
support conditional effects, we also enable strong stubborn
sets pruning and/or orbit search, which both do not support
these, either. DecStar tries the pattern database heuristic
with patterns generated using a genetic algorithm (hGA-PDB)
(Edelkamp 2006), a Merge&Shrink heuristic with linear
merge order and bisimulation (hM&S) (Helmert, Haslum, and
Hoffmann 2007; Helmert et al. 2014; Sievers, Wehrle, and
Helmert 2014), the landmark-count heuristic (hLMc) (Porte-
ous, Sebastia, and Hoffmann 2001; Richter, Helmert, and
Westphal 2008), and finally blind search.

Satisficing Track
In the satisficing track, DecStar runs three different com-
ponents. The first, similar to the optimal track, runs de-
coupled search with a fork factoring, since these typically
perform better, in particular when combined with the strong
leaf pruning methods (FP,IP). The second component tries
all factoring strategies, and additionally enables decoupled
orbit search. The “D” in paranthesis indicates that, if none of
the factoring strategies succeeds, the component falls back
to standard search using the same options. Both components
use the hFF heuristic and perform preferred operator prun-
ing, using FD’s dual queue mechanism.

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 1M hFF FP,IP,PO 100s
(D)GBFS F/IF/IA 1/1/0.1M hFF (D)OSS,PO 1000s
GBFS - - hLM,hFF PO 700s

Figure 2: Portfolio configuration in the satisficing track.
Components are launched top to bottom.

If all is lost, DecStar gets help from his experienced friend
LAMA, adopting its first iteration (Richter, Westphal, and
Helmert 2011).

Bounded-Cost Track
The components that DecStar uses in the bounded-cost track
are a mix of the components described above for the opti-
mal and satisficing track. DecStar starts by running each
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satisficing-track component for 100s. It then uses a weighted
A∗ search (weight 3), in case none of the previous compo-
nents could find a plan within the given bound. This is fol-
lowed by the components used in the optimal track.

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 1M hFF PO,FP,IP 100s

(D)GBFS F/IF/IA 1/1/0.1M hFF (D)OSS,PO 100s

GBFS - - hLM,hFF PO 100s

DWA∗ F/IF/IA 10/10/1M hFF DOSS 400s

DA∗ F 10M hLM-cut DSSS,FP,IP 100s

DA∗ F/IF/IA 10/10/1M hLM-cut DSSS,DOSS 400s

A∗ - - hLM-cut SSS,OSS 120s

A∗ - - hGA-PDB SSS 120s

A∗ - - hM&S - 120s

A∗ - - hLMc - 120s

A∗ - - blind - 120s

Figure 3: Portfolio configuration in the bounded-cost track.
Components are launched top to bottom.

Agile Track

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 10K hFF FP,IP,PO 60s
(D)GBFS F/IF/IA 10/10/1K hFF (D)OSS,PO 120s
GBFS - - hLM,hFF PO 120s

Figure 4: Portfolio configuration in the agile track. Compo-
nents are launched top to bottom.

In the agile track, DecStar uses the same search compo-
nents as in the satisficing track, but with different timeouts
and leaf space size limits. The latter is due to the fact that
the larger the leaves, the bigger the runtime overhead per
decoupled state. Since the time limit is significantly smaller
in the agile track, we try to keep the leaves as small as pos-
sible. In spite of the tight time constraint, we still run the
h2-preprocessor for 10s.

Conclusion
DecStar is the best that star-topology decoupling currently
has to offer. Many extensions have been developed, allowing
the use of various search algorithms, heuristic functions, and
pruning techniques. Decoupled search has proved to be a
method that can beat other state-of-the-art planners, also in
the unsolvability IPC 2014, if the given planning task can be
nicely decoupled. Even outside the planning area, namely in
proving safety properties in model checking, star-topology
decoupling has shown its merit (Gnad et al. 2018).

And still, there are many possible ways of further extend-
ing it. In classical planning, where it is crucial to use strong
heuristics, the next steps are to do research on how to apply
abstraction and LP heuristics in decoupled search. In model
checking, an interesting research question is the extension
of star-topology decoupling to prove liveness properties.
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Abstract

Red-black planning is the state-of-the-art approach to satis-
ficing classical planning. A planner Mercury, empowered by
the red-black planning heuristic, was the runner-up of the lat-
est International Planning Competition (IPC) 2014, despite
the trivial handling of conditional effects by compiling them
away. Conditional effects are important for classical plan-
ning and required in many domains for efficient modeling.
Another recent success in satisficing classical planning is the
Novelty based heuristic guidance. When novelty of heuris-
tic values is considered, search space is partitioned into nov-
elty layers. Exploring these layers in the order of their nov-
elty considerably improves the performance of the underlying
heuristics. Yet another recent success relates to the transla-
tion of planning tasks from the input PDDL language to a
grounded multi-valued variable based representation, such as
SAS+. Recent methods of invariants synthesis allow for de-
riving richer SAS+ representations.
We herein present a satisficing classical planner which we
baptize Cerberus, that incorporates these three recent im-
provements. It starts by performing enhanced mutex detec-
tion to derive a SAS+ planning task with conditional effects.
Then, it performs best first search of various greediness, ex-
ploiting red-black planning heuristic with a direct handling
of conditional effects and using such red-black heuristic as a
base for a novelty heuristic.

Introduction
Delete relaxation heuristics have played a key role in the
success of satisficing planning systems (Bonet and Geffner
2001; Hoffmann and Nebel 2001; Richter and Westphal
2010). A well-known pitfall of delete relaxation is its inabil-
ity to account for repetive achievements of facts. It has thus
been an actively researched question from the outset how to
take some deletes into account, e. g. (Fox and Long 2001;
Gerevini, Saetti, and Serina 2003; Helmert 2004; Helmert
and Geffner 2008; Baier and Botea 2009; Cai, Hoffmann,
and Helmert 2009; Haslum 2012; Keyder, Hoffmann, and
Haslum 2012). Red-black planning framework (Domshlak,
Hoffmann, and Katz 2015), where a subset of red state vari-
ables takes on the relaxed value-accumulating semantics,
while the other black variables retain the regular semantics,
introduced a convenient way of interpolating between fully
relaxed and regular planning.

Katz, Hoffmann, and Domshlak (2013b) introduced the
red-black framework and conducted a theoretical investi-
gation of tractability. Following up on this, they devised
practical red-black plan heuristics, non-admissible heuris-
tics generated by repairing fully delete-relaxed plans into
red-black plans (Katz, Hoffmann, and Domshlak 2013a).
Observing that this technique often suffers from dramatic
over-estimation incurred by following arbitrary decisions
taken in delete-relaxed plans, Katz and Hoffmann (2013)
refined the approach to rely less on such decisions, yield-
ing a more flexible algorithm delivering better search guid-
ance. Subsequently, Katz and Hoffmann (2014b) presented
a red-black DAG heuristics for a tractable fragment charac-
terized by DAG black causal graphs and devise some en-
hancements targeted at making the resulting red-black plans
executable in the real task, stopping the search if they suc-
ceed in reaching the goal. Red-black DAG heuristics are
in the heart of the Mercury planner (Katz and Hoffmann
2014a), the runner-up of the sequential satisficing track in
the latest International Planning Competition (IPC 2014).
All aforementioned work on red-black planning, however,
handles the SAS+ fragment without conditional effects, de-
spite of conditional effects being a main feature in the do-
mains of IPC 2014. The planner Mercury that favorably par-
ticipated in IPC 2014, handles conditional effects by simply
compiling them away (Nebel 2000). Obviously, the num-
ber of actions in the resulted planning tasks grows exponen-
tially, and thus such straight forward compiling away does
not scale well. Nebel (2000) presents an alternative compila-
tion, that does not lead to an exponential blow-up in the task
size. This compilation, however does not preserve the delete
relaxation. Thus, several delete relaxation based heuristics
were adapted to natively support conditional effects (Haslum
2013; Röger, Pommerening, and Helmert 2014). Recently,
Katz (2018) has shown that the fragment of red-black plan-
ning characterized by DAG black causal graphs remains
tractable in the presence of conditional effects, extending the
existing red-black planning heuristics to natively handling
conditional effects.

Search-boosting and pruning techniques have consider-
ably advanced the state-of-the-art in planning as heuristic
search (Richter and Helmert 2009; Richter and Westphal
2010; Xie et al. 2014; Valenzano et al. 2014; Domshlak,
Katz, and Shleyfman 2013; Lipovetzky and Geffner 2012).
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One such technique is based on the concept of novelty of
a state, where the search procedure prunes nodes that do
not qualify as novel. The concept has been successfully
exploited in classical planning via SIW+ and DFS(i)
search algorithms and in heuristic search, in conjunction
with helpful actions (Lipovetzky and Geffner 2012; 2014;
2017). and in blind state-space search for deterministic on-
line planning in Atari-like problems (Lipovetzky, Ramirez,
and Geffner 2015), where it was later generalized to ac-
count for rewards (Shleyfman, Tuisov, and Domshlak 2016;
Jinnai and Fukunaga 2017). The latter work, although ap-
plied to Atari-like problems, is valid for planning with re-
wards in general, when rewards are defined on states. Con-
sequently, (Katz et al. 2017) brought the concept of novelty
back to heuristic search, adapting the novelty definition of
Shleyfman, Tuisov, and Domshlak (2016) to a novelty of a
state with respect to its heuristic estimate. The new nov-
elty notion was no longer used solely for pruning search
nodes, but rather as a heuristic function, for node ordering in
a queue. However, since such heuristics are not goal-aware,
Katz et al. (2017) use the base goal-aware heuristic as a sec-
ondary (tie-breaking) heuristic for node ordering.

In this work we construct a planner Cerberus, named af-
ter the monstrous three-headed guardian of the gates of the
Underworld in Greek mythology. The planner incorporates
three main recent improvements, namely enhanced mutex
detection, recent novelty heuristic, and the extension of red-
black planning heuristic to conditional effects. Two variants
of the planner submitted to the International Planning Com-
petition (IPC) 2018 differ in the red-black planning heuristic
they use. In the reminder of this paper we describe the com-
ponents in detail.

Configurations
Both Cerberus variants participate in three tracks, namely
satisficing, agile, and bounded-cost. They are built on top of
the adaptation of the Mercury planner (Katz and Hoffmann
2014a), runner-up of the sequential satisficing track of IPC
2014, to the recent version of the Fast Downward framework
(Helmert 2006). Furhter, the implementation is extended to
natively support conditional effects (Katz 2018). In contrast
to Mercury planner, the red-black planning heuristic is en-
hanced by the novelty heuristic (Katz et al. 2017), replacing
the queues ordered by the red-black planning heuristic hRB

in Mercury planner with queues ordered by the novelty of a
state with respect to its red-black planning heuristic estimate
hRB , with ties broken by hRB . In what follows, we describe
the parts that are shared between the tracks and then detail
the configuration for each track.

Enchanced Invariance Detection
As the search and the heuristic computation are performed
on the finite domain representation SAS+ (Bäckström and
Nebel 1995), invariance detection plays a significant role
in the quality of the translation from PDDL representation
to SAS+. To reduce the number of multi-valued state vari-
ables we exploit the h2 mutexes detection as a preprocessing
step (Alcázar and Torralba 2015). In our preliminary exper-

iments, this step was observed to make a significant contri-
bution to the performance of the overall planning system.

Red-Black Planning Heuristic
In order to describe the configuration of the red-black plan-
ning heuristic hRB , we need to specify how a red-black task
is constructed (which variables are chosen to be red and
which black), also known as painting strategy, as well as
how the red-black task is solved. In both cases, we followed
the choices made by Mercury planner. Specifically, for red-
black task construction followed one of the basic strategies,
namely ordering the variables by causal graph level, and
either (a) iteratively painting variables red until the black
causal graph becomes a DAG (Domshlak, Hoffmann, and
Katz 2015), or (b) iteratively painting variables black as long
as the black causal graph is a DAG. There are two submit-
ted planners, that differ in their painting strategies. While
the planner that (similarly to Mercury planner) uses strategy
(a) is called Cerberus, the planner that uses strategy (b) is
denoted by Cerberus-gl. These two planners differ in red-
black planning task creation only, and therefore in what fol-
lows, we describe the configurations without mentioning the
actual planner. The further difference from Mercury planner
is in the definition of invertibility in the presence of condi-
tional effects. In our planners we follow the definition of
Katz (2018).

For solving the red-black task, we use the algorithm pre-
sented in Figure 2 of Katz (2018). It is an adaptation of the
algorithm of Katz and Hoffmann (2014a) to tasks with con-
ditional effects. The algorithm receives a red-black planning
task, as well as a set of red facts that is sufficient for reach-
ing the red-black goals. Such a set is typically obtained from
a relaxed solution to the task. Then, it iteratively (i) selects
an action that can achieve some previously unachieved fact
from that set, (ii) achieves its preconditions, and (iii) applies
the action. Finally, when all the facts in the set are achieved,
it achieves the goal of the task. We follow Katz and Hoff-
mann (2014a) in the two optimizations applied to ehnance
red-black plan applicability: selecting the next action in (i)
preferring actions such that achieving their black precondi-
tions does not involve deleting facts from the set above, and
selecting the sequences of actions in (ii), preferring those
that are executable in the current state.

Landmarks Count Heuristic
Following the successful approaches of Mercury and LAMA
planners, we use additional queues ordered by the landmark
count heuristic (Richter and Westphal 2010).

Novelty Heuristic
The novelty heuristic used in our planners measures the nov-
elty of a state with respect to its red-black planning heuristic
estimate hRB . Specifically, we use the hQB heuristic, as de-
scribed in Equation 3 of Katz et al. (2017). The quantified
both novel and non-novel heuristic hQB is designed not only
to distinguish novel states from non-novel ones, but also to
separate novel states, and even to separate non-novel ones.
Consequently, we use the best performing overall configura-
tion of Katz et al. (2017) in Cerberus planners.
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Satisficing Track
The configuration runs a sequence of search iterations of de-
creasing level of greediness. The first iteration is the greedy
best-first search (GBFS) with deferred heuristic evaluation,
alternating between four queues. The first queue is ordered
by the novelty of a state with respect to its red-black plan-
ning heuristic estimate hRB , with ties broken by hRB . The
second queue consists of states achieved by preferred oper-
ators of the red-black planning heuristic1 hRB , ordered by
hRB . The third and forth queues are ordered by the land-
mark count heuristic, with all successors and those achieved
by the preferred operators, respectively.

The next iterations perform a weighted A∗ with deferred
heuristic evaluation and decreasing weights w = 5, 3, 2, 1,
continuing with w = 1. All these iterations alternate be-
tween the four queues as in Mercury planner, with the first
two ordered by hRB , with all successors and those achieved
by the preferred operators, respectively, and the last two as
in the first iteration. In case a solution is found in the pre-
vious iteration, its cost is passed as a pruning bound to the
next iteration.

In case of non-unit costs, a cost transformation is per-
formed, adding a constant 1 to all costs. Further, the first
iteration is performed twice, once with unit costs and once
with the increased costs.

Agile Track
The configuration in the agile track mimics the first itera-
tion of the configuration in the satisficing track as described
above.

Bounded-Cost Track
The configuration in the bounded-cost track mimics the con-
figuration in the agile track as described above. The only
difference is that the cost bound is provided as an input.
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Abstract

Mercury is a sequential satisficing planner that favorably
competed in the International Planning Competition (IPC)
2014. Mercury planner is based mainly on the red-black
planning heuristic. Red-black planning is a systematic ap-
proach to partial delete relaxation, taking into account some
of the delete effects: Red variables take the relaxed (value-
accumulating) semantics, while black variables take the reg-
ular semantics. Mercury planner exploits a powerful tractable
fragment requiring the black causal graph – the projection of
the causal graph onto the black variables – to be a DAG. Fur-
ther, it applies techniques aimed at making red-black plans
executable, short-cutting the search. As in 2014, Mercury
planner is entered into sequential satisficing and agile tracks
of the competition.

Planner structure
Mercury planner (Katz and Hoffmann 2014a) is a sequential
satisficing planner that is implemented in the Fast Down-
ward planning system (Helmert 2006). The planner is sub-
mitted for participation in the International Planning Com-
petition (IPC) 2018.

Satisficing Track
The variant that competes in the satisficing track performs
multiple iterations of heuristic search, starting with a fast
and inaccurate greedy best-first search with deferred heuris-
tic evaluation. Once a solution is found, next iterations run
weighted A∗ with deferred heuristic evaluation, gradually
decreasing the weight parameter, similarly to the famous
LAMA planning system (Richter and Westphal 2010). The
cost of the best plan found so far is used in following iter-
ations for search space pruning. Also similarly to LAMA,
each search iteration alternates between four queues, two
per heuristic, with all successors and successors reached by
preferred operators only. The heuristics are the landmark
count heuristic (Porteous, Sebastia, and Hoffmann 2001),
and the red-black planning heuristic (Katz, Hoffmann, and
Domshlak 2013b; 2013a; Katz and Hoffmann 2013; 2014b;
Domshlak, Hoffmann, and Katz 2015). For red-black
heuristic, which is based on FF (Hoffmann and Nebel 2001),
the preferred operators are obtained as the preferred opera-
tors of FF heuristic.

Agile Track
The variant that competes in the agile track performs a single
iteration of a greedy best-first search with deferred heuristic
evaluation, alternating between two queues ordered by the
red-black planning heuristic. These queues are filled with
all successors and successors reached by preferred operators
defined by the red-black planning heuristic.

Red-Black Planning Heuristic
In order to describe the configuration of the red-black plan-
ning heuristic, we need to specify how a red-black task is
constructed (which variables are chosen to be red and which
black), also known as painting strategy, as well as how the
red-black task is solved. For red-black task construction the
variables are ordered by causal graph level and iteratively
painted red until the black causal graph becomes a DAG
(Domshlak, Hoffmann, and Katz 2015). For solving the red-
black task, the following algorithm is used: The algorithm
receives a red-black planning task, as well as a set of red
facts that is sufficient for reaching the red-black goals. Such
a set is typically obtained from a relaxed solution to the task.
Then, it iteratively (i) selects an action that can achieve some
previously unachieved fact from that set, (ii) achieves its pre-
conditions, and (iii) applies the action. Finally, when all the
facts in the set are achieved, it achieves the goal of the task.
There are two optimizations applied to ehnance red-black
plan applicability: selecting the next action in (i) preferring
actions such that achieving their black preconditions does
not involve deleting facts from the set above, and selecting
the sequences of actions in (ii), preferring those that are ex-
ecutable in the current state (Katz and Hoffmann 2014a).

Supported Features
As in the previous competition, a support for conditional ef-
fects is currently required. Mercury planner supports con-
ditional effects by compiling them away. This was done by
multiplying them out in the translation step. On one hand,
this can lead to an exponential blow-up in the task represen-
tation size. On the other hand, it does not split up an opera-
tor application into a sequence of operator applications. Our
decision was based on the speculation that the latter option
could potentially decrease red-black plan applicability, one
of the main advantages of the current red-black heuristics.
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In order to be able to take advantage of the larger memory
resource available to the participants of the current competi-
tion, the planner is built with the support for 64bit enabled.
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Abstract

Heuristic search with red-black planning heuristics is among
the most effective approaches to satisficing planning and the
driving power behind the state-of-the-art satisficing planner
Mercury. Another recent success in satisficing planning is
due to the introduction of novelty based heuristic guidance,
in particular a guidance measuring the novelty of a heuristic
estimate in a state.
A satisficing planner that we baptize MERWIN empowers
red-black planning heuristics with novelty based guidance,
measuring the novelty of red-black planning heuristic esti-
mates in explored states. MERWIN planner partitions the
state space into novelty layers, expanding the most novel
nodes first, and breaking ties within each layer by the red-
black heuristic values.

Introduction
Delete relaxation heuristics are the key component of many
successful planning systems (Bonet and Geffner 2001; Hoff-
mann and Nebel 2001; Richter and Westphal 2010). These
heuristics though have a well-known pitfall of not being able
to account for multiple achievements of the same fact, which
leads to a wide research on how to take at least some deletes
into account, e. g. (Fox and Long 2001; Gerevini, Saetti,
and Serina 2003; Helmert 2004; Helmert and Geffner 2008;
Baier and Botea 2009; Cai, Hoffmann, and Helmert 2009;
Haslum 2012; Keyder, Hoffmann, and Haslum 2012). One
such approach is so-called red-black planning (Domshlak,
Hoffmann, and Katz 2015), where a subset of red state vari-
ables takes on the relaxed value-accumulating semantics,
while the other black variables retain the regular semantics.
This allows to interpolate between fully relaxed and regular
planning. The work started with the introduction of the red-
black framework and a theoretical investigation of tractabil-
ity (Katz, Hoffmann, and Domshlak 2013b). Following
up on this, practical non-admissible red-black plan heuris-
tics were introduced, extending delete-relaxed plans into
red-black plans (Katz, Hoffmann, and Domshlak 2013a).
The technique, however, often suffered from dramatic over-
estimation incurred by following arbitrary decisions taken
in delete-relaxed plans, and to overcome this shortcoming,
Katz and Hoffmann (2013) refined the approach to rely less
on such decisions, yielding a more flexible algorithm de-
livering better search guidance. Subsequently, Katz and

Hoffmann (2014b) presented a red-black DAG heuristics
for a tractable fragment characterized by DAG black causal
graphs and devised some enhancements targeted at making
the resulting red-black plans executable in the real task, stop-
ping the search if they succeed in reaching the goal. Red-
black DAG heuristics are in the heart of the Mercury planner
(Katz and Hoffmann 2014a), the runner-up of the sequential
satisficing track in the latest International Planning Com-
petition (IPC 2014). It is worth mentioning that all afore-
mentioned work on red-black planning handles the SAS+

fragment without conditional effects. Since conditional ef-
fects were a required feature to be supported by participat-
ing planners, Mercury handled conditional effects by simply
compiling them away (Nebel 2000).

Search-boosting and pruning techniques have consider-
ably advanced the state-of-the-art in planning as heuristic
search (Richter and Helmert 2009; Richter and Westphal
2010; Xie et al. 2014; Valenzano et al. 2014; Domshlak,
Katz, and Shleyfman 2013; Lipovetzky and Geffner 2012).
One such technique is based on the concept of novelty of
a state, where the search procedure prunes nodes that do
not qualify as novel. Novelty has been successfully ex-
ploited for pruning in classical planning via SIW+ and
DFS(i) search algorithms (Lipovetzky and Geffner 2012;
2014). The blind novelty pruning IW algorithm has shown
great performance for classical online planning and finite
horizon MDP problems over the Atari simulator (ALE) and
General Video Game competition (GVG-AI) (Lipovetzky,
Ramirez, and Geffner 2015; Bandres, Bonet, and Geffner
2018; Geffner and Geffner 2015), where it was later gener-
alised to account for novelty based on rewards (Shleyfman,
Tuisov, and Domshlak 2016; Jinnai and Fukunaga 2017).
The latter work, although applied to Atari-like problems, is
valid for planning with rewards in general, when rewards
are defined on states. Consequently, Lipovetzky and Geffner
(2017a) and Katz et al. (2017) brought the concept of nov-
elty back to heuristic search, adapting the novelty definition
of Shleyfman, Tuisov, and Domshlak (2016) to a novelty
of a state with respect to its heuristic estimate. These two
adaptations, althogh similar in nature, differ in detail (Katz
et al. 2017). The new novelty notion was no longer used
solely for pruning search nodes, but rather as a heuristic
function, for node ordering in a queue. However, since such
heuristics are not goal-aware, both Lipovetzky and Geffner
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(2017a) and Katz et al. (2017) use the base heuristic as a
secondary (tie-breaking) heuristic for node ordering. This
general search framework is sometimes referred to as Best
First Width Search (BFWS) (Lipovetzky and Geffner 2017a).
Variants of BFWS can yield state-of-the-art polynomial plan-
ners (Lipovetzky and Geffner 2017b), and maintain good
performance even when the action model is given as a Black-
box simulator (Frances et al. 2017). In what follows, we
exploit the notion of novelty of a state with respect to its
heuristic estimate as defined by Katz et al. (2017).

In this work we construct a planner MERWIN, which
stands for MERcury enhanced WIth Novelty, by exploit-
ing both the red-black planning heuristic and the novelty
of states with respect to a heuristic estimate. In particular,
we modify the Mercury planner by replacing the queue or-
dered by red-black planning heuristic with a queue ordered
by the novelty of a state with respect to its red-black plan-
ning heuristic estimate, breaking ties by that red-black plan-
ning heuristic estimate.

Configurations
MERWIN planner participates in three tracks, namely sat-
isficing, agile, and bounded-cost. It is built on top of the
Mercury planner (Katz and Hoffmann 2014a), runner-up
of the sequential satisficing track of the International Plan-
ning Competition (IPC) 2014. Informally, as was mentioned
above, the red-black planning heuristic in Mercury planner
is enhanced by the novelty heuristic (Katz et al. 2017), and
thus the queues ordered by the red-black planning heuristic
hRB in Mercury planner are replaced by the queues ordered
by the novelty of a state with respect to its red-black plan-
ning heuristic estimate hRB , with ties broken by hRB . In
what follows, we describe the heuristics used for all tracks
and then detail the configuration for each track.

Red-Black Planning Heuristic
In order to describe the configuration of the red-black plan-
ning heuristic hRB , we need to specify how a red-black task
is constructed (which variables are chosen to be red and
which black), also known as painting strategy, as well as
how the red-black task is solved. In both cases, we followed
the choices made by Mercury planner. Specifically, for red-
black task construction followed one of the basic strategies,
namely ordering the variables by causal graph level, and it-
eratively painting variables red until the black causal graph
becomes a DAG (Domshlak, Hoffmann, and Katz 2015).

For solving the red-black task, MERWIN planner uses
the algorithm presented in Figure 2 of Katz and Hoffmann
(2014a). The algorithm receives a red-black planning task,
as well as a set of red facts that is sufficient for reaching
the red-black goals. Such a set is typically obtained from a
relaxed solution to the task. Then, it iteratively (i) selects
an action that can achieve some previously unachieved fact
from that set, (ii) achieves its preconditions, and (iii) applies
the action. Finally, when all the facts in the set are achieved,
it achieves the goal of the task. We follow Katz and Hoff-
mann (2014a) in the two optimizations applied to ehnance
red-black plan applicability: selecting the next action in (i)

giving a preference to actions whose black preconditions can
be achieved without deleting facts from the set above, and
selecting the sequences of actions in (ii), preferring those
that are executable in the current state.

Novelty Heuristic

The novelty heuristic used in our planners measures the nov-
elty of a state with respect to its red-black planning heuristic
estimate hRB . Specifically, we use the hQB heuristic, as
described in Equation 3 of Katz et al. (2017). The quan-
tified both novel and non-novel heuristic hQB is designed
not only to distinguish novel states from non-novel ones, but
also to separate the degree of (non-)novelty. Consequently,
we use the best performing overall configuration of Katz et
al. (2017) in MERWIN planner.

Landmarks Count Heuristic

Following the successful approaches of Mercury and LAMA
planners, MERWIN planner uses additional queues ordered
by the landmark count heuristic (Richter and Westphal
2010).

Satisficing Track

The configuration runs a sequence of search iterations of de-
creasing level of greediness. The first iteration is the greedy
best-first search (GBFS) with deferred heuristic evaluation,
alternating between four queues. The first queue is ordered
by the novelty of a state with respect to its red-black plan-
ning heuristic estimate hRB , with ties broken by hRB . The
second queue consists of states achieved by preferred oper-
ators of the red-black planning heuristic1 hRB , ordered by
hRB . The third and forth queues are ordered by the land-
mark count heuristic, with all successors and those achieved
by the preferred operators, respectively.

The next iterations perform a weighted A∗ with deferred
heuristic evaluation and decreasing weights w = 5, 3, 2, 1,
continuing with w = 1. All these iterations alternate be-
tween the four queues as in Mercury planner, with the first
two ordered by hRB , with all successors and those achieved
by the preferred operators, respectively, and the last two as
in the first iteration. In case a solution is found in the pre-
vious iteration, its cost is passed as a pruning bound to the
next iteration.

In case of non-unit costs, a cost transformation is per-
formed, adding a constant 1 to all costs. Further, the first
iteration is performed twice, once with unit costs and once
with the increased costs.

Agile Track

The configuration in the agile track mimics the first itera-
tion of the configuration in the satisficing track as described
above.

1These are basically the preferred operators of the full delete
relaxation, an FF heuristic.
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Bounded-Cost Track
The configuration in the bounded-cost track mimics the con-
figuration in the agile track as described above. The only
difference is that the cost bound is provided as an input.

Supported Features
As in the last competition, planners are required to support
planning tasks with conditional effects. Following the strat-
egy of Mercury planner, we have chosen here as well to
compile the conditional effects away. This was done in a
straighforward fashion, multiplying-out the actions (Nebel
2000) in the translation step. On one hand, this can lead to
an exponential blow-up in the task representation size. On
the other hand, it does not split up an operator application
into a sequence of operator applications. Our decision was
based on the success of the approach in Mercury planner,
as well as the speculation that the latter option could poten-
tially decrease red-black plan applicability, one of the main
advantages of the current red-black heuristics.
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Abstract
Cost-optimal planning has not seen many successful ap-
proaches that work well across all domains. Some cost-
optimal planners excel on some domains, while exhibiting
less exciting performance on others. For a particular domain,
however, there is often a cost-optimal planner that works ex-
tremely well. For that reason, portfolio-based techniques have
recently become popular. These either decide offline on a par-
ticular resource allocation scheme for a given collection of
planners or try to perform an online classification of a given
planning task to select a planner to be applied to solving the
task at hand.
Our planner Delfi is an online portfolio planner. In contrast to
existing techniques, Delfi exploits deep learning techniques
to learn a model that predicts which of the planners in the
portfolio can solve a given planning task within the imposed
time and memory bounds. Delfi uses graphical representa-
tions of a planning task which allows exploiting existing tools
for image convolution. In this planner abstract, we describe
the techniques used to create our portfolio planner.

Introduction
As planning is known to be computationally hard even
for extremely conservative problem formalisms (Bylander
1994), no single planner should be expected to work well
on all planning domains, or even on all tasks in a particular
domain. As a result, research has not only focused on de-
veloping different planning techniques, such as improving
search or heuristics, but also on exploiting multiple diverse
approaches for solving planning tasks.

One such a approach is to aggregate multiple planners in
a portfolio (Seipp et al. 2012; Vallati 2012; Cenamor, de la
Rosa, and Fernández 2013; Seipp et al. 2015), which is what
we do in this work. Such portfolios are often sequential and
defined by two decisions: (i) which planner of the available
to run next, and (ii) for how long to run it until the next plan-
ner is selected. Furthermore, the portfolio-based approaches
can be partitioned in those that make those decisions ahead
of time, called offline portfolios (Helmert et al. 2011; Núñez,
Borrajo, and Linares López 2014; Seipp, Sievers, and Hutter
2014a; 2014b; 2014c) and those that make these decisions
per given input task, called online portfolios (Cenamor, de
la Rosa, and Fernández 2014).

Our planner, called Delfi for DEap Learning of PortFo-
lIos, is an online portfolio planner submitted to optimal clas-

sical track of the International Planning Competition (IPC)
2018. It consists of (a) a collection of cost-optimal planners
based on Fast Downward (Helmert 2006), and (b) a mod-
ule that, given a planning task, selects the planner from the
collection for which the confidence that it solves the given
planning task is highest. Once selected, the planner is run on
the given task for the entire available time. In the remain-
der of this planner abstract, we describe both components in
detail.

Collection of Cost-Optimal Planners
The large literature on classical planning results in an exten-
sive pool of available planning systems that we could in prin-
ciple all use. However, there are a few aspects that guided
our decision to collect a rather small subset of specific plan-
ners. Firstly, the task of integrating the diverse planners
within one system able to run them all in the same setting is
a big (technical) challenge, and evaluating all of these plan-
ners for the training phase of learning the model would be
extremely time-consuming. Secondly, portfolio planners al-
ways suffer from clearly identifying their components that
are primarily responsible for the good performance of the
portfolio planner.

Bearing in mind the first aspect, we restricted the pool of
planners to those based on Fast Downward (Helmert 2006).
This has the additional advantage that we also exploit how
far a portfolio exclusively based on a single planning sys-
tem fares. With respect to the second aspect, we excluded
all recent (and state-of-the-art) planners that have not been
evaluated in any previous competition. In particular, many
of these planners are submitted independently to the IPC
2018. Furthermore, we mainly focused on planners with
main components that we co-developed in order to primarily
evaluate our own contributions.

These considerations result in a collection of 17 plan-
ners for our portfolio planner Delfi. With the exception of
SymBA∗ (Torralba et al. 2014), the winner of the IPC 2014,
included as-is in our collection of planners, all planners are
based on a recent version of Fast Downward. These 16 plan-
ners use A∗ search (Hart, Nilsson, and Raphael 1968) and
differ in the subsets of the following additional components
they use. Please refer to the Appendix for the complete list
of planner configurations of our collection, which is identi-
cal for both variants of Delfi.
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• Pruning based on partial order reduction using strong
stubborn sets (Wehrle and Helmert 2014). Delfi uses the
implementation of strong stubborn sets available in Fast
Downward, which is based on the original implementa-
tion of Alkhazraji et al. (2012) and Wehrle and Helmert
(2012) that has also been used in Metis 2014 (Alkhazraji
et al. 2014). However, the current implementation has
been improved in terms of efficiency since its original de-
velopment.1 To support conditional effects, we extended
the implementation in the same way as in Metis 2014. We
also use the same mechanism that disables pruning after
the first 1000 expansions if only 10% or fewer states have
been pruned at this point. This component is part of all 16
planners.

• Pruning based on structural symmetries (Shleyfman et al.
2015) using DKS (Domshlak, Katz, and Shleyfman 2012)
or orbit space search (OSS) (Domshlak, Katz, and Shleyf-
man 2015). We extended the original implementation of
problem description graphs, also called symmetry graphs,
which serve as basis for computing symmetries, to sup-
port conditional effects. Sievers et al. (2017) recently for-
mally defined this extension in the context of structural
symmetries of lifted representations. Out of the 16 plan-
ners, 8 use DKS search and the other 8 use OSS, with-
out any other further difference except that merge-and-
shrink configurations with OSS need to disable pruning of
unreachable states to avoid incorrectly reporting pruned
states as dead ends (cf. Sievers et al., 2015, for more de-
tails).

• Admissible heuristics:
– The blind heuristic.
– The LM-cut heuristic (Helmert and Domshlak 2009).

To support conditional effects, we implemented a vari-
ant of the LM-cut heuristic that considers effect con-
ditions in the same way as Metis 2014 (Alkhazraji et
al. 2014) does. However, we refrain from choosing the
regular LM-cut heuristic or the variant that supports
conditional effects depending on the requirements of
the input planning task, and instead always use the lat-
ter implementation that comes with a small overhead
due to the need for different data structures.

– The canonical pattern database (CPDB) heuristic with
hillclimbing (HC) to compute pattern collections, also
referred to as iPDB in the literature (Haslum et al.
2007). We add a time limit of 900s to the hillclimbing
algorithm and denote the planner by HC-CPDB.

– The zero-one cost partitioning pattern database
(ZOPDB) heuristic with a genetic algorithm (GA) to
compute pattern collections (Edelkamp 2006). We call
the planner GA-ZOPDB.

– Four variants of the merge-and-shrink heuristic
(Dräger, Finkbeiner, and Podelski 2009; Helmert et
al. 2014; Sievers 2017). Three of them use the state-
of-the-art shrink strategy based on bisimulation (Nis-

1See http://issues.fast-downward.org/
issue499 and http://issues.fast-downward.
org/issue628.

sim, Hoffmann, and Helmert 2011) with a size limit
of 50000 states on transition systems, always allowing
(perfect) shrinking, called B. The fourth variant uses a
greedy variant of B, called G, not imposing any size
limit on transition systems, and also always allowing
shrinking. All configurations use full pruning (Sievers
2017), i.e., always prune both unreachable and irrel-
evant states, unless combined with OSS as discussed
above, in which case pruning of unreachable states is
disabled. We perform exact label reductions based on
Θ-combinability (Sievers, Wehrle, and Helmert 2014)
with a fixed point algorithm using a random order on
factors.
Finally, all variants use a time limit of 900s for comput-
ing the heuristic, which leads to computing so-called
partial merge-and-shrink abstractions that do not cover
all variables of the task whenever the time limit is
hit. In these cases, we pick one of the remaining in-
duced heuristics according to the following rule of
thumb: we prefer the heuristic with the largest esti-
mate for the initial state (rationale: better informed
heuristic), breaking ties in favor of larger factors (ratio-
nale: more fine-grained abstraction), and choose a ran-
dom heuristic among all remaining candidates of equal
preference. For more details on this, we refer to the
paper introducing partial abstractions (Sievers 2018b)
and the separate competition entry called Fast Down-
ward Merge-and-Shrink (Sievers 2018a) which uses the
same merge-and-shrink configurations as our portfolio.
The remaining difference between the four variants is
the merge strategy, which finally results in the follow-
ing merge-and-shrink configurations:
∗ B-SCCdfp: the state-of-the-art merge strategy based

on strongly connected components of the causal graph
(Sievers, Wehrle, and Helmert 2016), which uses
DFP (Sievers, Wehrle, and Helmert 2014) for internal
merging.

∗ B-MIASMdfp: the entirely precomputed merge strat-
egy maximum intermediate abstraction size minimiz-
ing (Fan, Müller, and Holte 2014), which uses DFP as
a fallback mechanism.

∗ B-sbMIASM (previously also called DYN-MIASM):
the merge strategy score-based MIASM (Sievers,
Wehrle, and Helmert 2016), which is a simple variant
of MIASM.

∗ G-SCCdfp: as SCCdfp, but with the greedy variant of
bisimulation-based shrinking.

As mentioned above, each heuristic is used in two plan-
ners, once with OSS and once with DKS. For the two
PDB-based heuristics that do not support conditional ef-
fects natively, we compile away conditional effects by
multiplying out all operators, adding copies for each pos-
sible scenario of different subsets of satisfied effect con-
ditions and operator preconditions.

• Postprocessing the SAS+ representation obtained with
the translator of Fast Downward (Helmert 2009) by us-
ing the implementation of h2 mutex detection of Alcázar
and Torralba (2015). This component is present in 14
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(a) Lifted representation (b) Grounded representation

Figure 1: Images constructed from lifted and grounded rep-
resentations of task pfile01-001.pddl of BARMAN-OPT11.

out of 16 planners. The two planners that do not ex-
ploit h2 mutexes use the merge-and-shrink configuration
B-MIASMdfp (once with OSS, once with DKS) which
heavily relies on remaining mutexes in the SAS+ repre-
sentation. Our preliminary experiments showed that us-
ing the postprocessing in this case significantly harmed
the performance.

Online Planner Selection
The online planner selection of Delfi is based on a model
that predicts for all planners of the portfolio whether they
solve a given planning task within the fixed resource and
time limits of the competition or not. To learn such a model,
we created a collection of tasks to serve as training set, ran
all planners in our collection on these tasks to find whether
they solve the task or not, and used the resulting data to train
a deep neural network. In what follows, we describe how we
created the data as well as how we trained the model.

Data Creation
Our collection of tasks includes all benchmarks of the clas-
sical tracks of all IPCs as well as some domains from the
learning tracks. We further include the domains BRIEF-
CASEWORLD, FERRY, and HANOI from the IPP bench-
mark collection (Köhler 1999), and the genome edit dis-
tance (GEDP) domain (Haslum 2011). We also use domains
generated by the conformant-to-classical planning compila-
tion (T0) (Palacios and Geffner 2009) and the finite-state
controller synthesis compilation (FSC) (Bonet, Palacios,
and Geffner 2009). In addition to existing tasks of these
domains, we generated additional ones for some domains
where generators were available. Please see the Appendix
for a complete list of used domains. To filter out too hard
tasks, we removed all tasks from the training set that were
not solved by any of our planners.

Data Representation
To be able to take advantage of existing deep learning tools,
we need to represent planning tasks in a way that can be
consumed by these tools. In the context of solving other
model-based problems, such as SAT and CSP, Loreggia et
al. (2016) converted the textual description of input prob-
lems to a grayscale image by converting each character to a

Figure 2: Visualization of the model graph structure.

pixel. Inspired by their ideas, we also chose to represent each
task by a grayscale image of a constant size of 128∗128 pix-
els.

However, in contrast to Loreggia et al. (2016), we chose
to abstract from the textual representation and decided to
use a structural representation of planning tasks, namely the
abstract structure (Sievers et al. 2017), which encodes the
PDDL description of the task. We either directly convert this
abstract structure to a graph by computing the abstract struc-
ture graph as described by Sievers et al. (2017), or we first
ground the abstract structure (which corresponds to ground-
ing the planning task) and the turn it into a graph. In the latter
case, we technically do not use the abstract structure graph
but the conceptually equivalent problem description graph
(Shleyfman et al. 2015), which usually is used to compute
symmetries of a ground task. Finally, we turn the graph into
a grayscale image that represents the adjacency matrix of the
graph and reduce the grayscale image to the desired constant
size.

In some preliminary experiments, we experimented with
both ways of creating an image for a planning task and de-
cided to use both. Delfi 1 computes the image from the lifted
representation of the task, and Delfi 2 from the grounded
one. (This is the only difference of the two variants of our
planner.) Figure 1 illustrates the different images we obtain
for a task of the BARMAN domain.

Model Creation
Our tool of choice for both model creation and training
is Keras (Chollet and others 2015) with Tensorflow as a
backend. For our model, we employ a simple convolutional
neural network (CNN) (LeCun, Bengio, and Hinton 2015)
consisting of one convolutional layer, one pooling layer,
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one dropout layer, and one hidden layer. The main reason
to choose a network with few parameters is to reduce the
chances of overfitting given the comparably limited amount
of data we created. Figure 2 shows the structure of the CNN.

We model planner performance by a binary feature that
indicates whether the planner solves a task within the given
time (1800 seconds) and memory (7744 MiB) limits or not.
We also experimented with using the actual runtime, hence
not predicting whether a planner solves a task or not, but
rather predicting the runtime of the planner on the task.
However, our preliminary tests indicated that the perfor-
mance of the network when using the binary feature is com-
parable to when using the actual runtime. Our conjecture is
that this is due to the relatively small amount of training data
and due to the fact that the model learned with the binary
feature bases the decision for a planner on the confidence
that this planner solves the task, which means that it is likely
to prefer faster planners. As a result, we decided to use the
simpler representation in our model.

Consequently, we trained the CNN by optimizing for bi-
nary cross-entropy (Rubinstein 1997) so that each planner
has a certain probability assigned to it that indicates how
likely it is to solve a problem within the limits. Although our
CNN is rather simple, it still features a range of model hyper-
parameters, which we fine-tuned employing the approach by
Diaz et al. (2017).2 For both lifted and grounded representa-
tions, the hyper-parameter optimization found very similar
parameters and thus we choose the same parameters in both
cases, which are as follows. The convolutional layer filter
size is 3, the pooling filter size is 1, and the dropout rate
is 0.48. The CNN is optimized using Stochastic Gradient
Decent with learning rate 0.1, decay 0.04, momentum 0.95,
nesterov set to FALSE and a batch size of 52.

Post-IPC Analysis
In the following, we evaluate the performance of the two
Delfi planners in the optimal classical track of the IPC 2018.
While Delfi 2 finished 7 among all 16 submissions, Delfi
1 took the first place. To assess the contribution of the in-
dividual components of the portfolios, we ran them on all
benchmarks under IPC conditions. We report both perfor-
mance on the training set on which we learned prior to the
IPC and performance on the new planning benchmarks from
the competition, which we will refer to as the test set. In ad-
dition to the individual results, we include the competition
results of Delfi 1 and 23 and of the oracle planner that takes
the maximum over all planners on a per-instance base. Fi-
nally, as a baseline for portfolio performance on the test set,
we also evaluate the uniform portfolio that runs each planner
from the portfolio with a equal time share of the IPC limit

2To evaluate our approach prior to the competition, we held
back the IPC 2014 domains as a separate validation set. Only
when learning the final model for the competition, we used the full
benchmark set with the previously determined fine-tuned hyperpa-
rameters.

3We also re-ran both Delfi planners ourselves but decided to
stick with the official competition results. The differences in cov-
erage and planner selection per domain were marginal.

of 30 minutes.
Table 1 shows aggregated coverage of the training set. For

full domain-wise coverage on the training set, see Table 4 in
the Appendix. We see that both variants of Delfi (coverage of
2282 and 2236) greatly improve over the best single planner
in our portfolio, LM-cut (coverage of 1956). At the same
time, the oracle portfolio solves 2350 tasks, which gives rise
to the hope that the learned models of the Delfi planners are
not overfitted too much on the training set.

Table 2 shows domain-wise coverage of the test set, us-
ing the same way as the IPC to compute aggregated results
for the two domains where two formulations have been used
(CALDERA and ORGANIC-SYNTHESIS), which is to take the
task-wise maximum performance of each planner. Looking
at the performance of the individual planners, we find that
their coverage of different domains is diverse. In particular,
Symba and HC-PDB (iPDB) are very complementary, but
also LM-cut and some merge-and-shrink variants achieve
best coverage in some domains.

Looking at the performance of the portfolios, we see that
the uniform portfolio does not improve over the best indi-
vidual planner, Symba, but even solves fewer tasks. While
Delfi 1 is much stronger than the baseline uniform portfo-
lio, the same is not true for Delfi 2, which even lacks behind
the best individual planner Symba. We discuss the difference
between Delfi 1 and 2 in more detail below. Finally, it is also
worth pointing out that the oracle planner solves 18 tasks out
of 240 more than Delfi 1, which leads us to conclude that the
learned model of Delfi 1 generalized very well to the test set
that the IPC 2018 benchmarks represent.

We now analyze the Delfi planners in more detail. Table 3
shows the number of times a component planner was chosen
by Delfi: the first block shows the number of times a specific
planner was chosen for each domain, and the second block
shows the number of times each planner was chosen in total.
We consider both variants of the two domains with two dif-
ferent formulations (CALDERA and ORGANIC-SYNTHESIS)
individually rather than the combined domain, since it is not
clear which planner to consider the chosen one if a different
planner was chosen for both formulations.4

Delfi 1 often consistently chooses one or few planners in
a given domain (with the exception of NURIKABE), which
seems to be reasonable since we expect the same planner
to be strong for different tasks across a given domain. Delfi
2, on the other hand, more frequently chooses a larger vari-
ety of planners in a domain.5 While we cannot explain this
significant difference yet, it is clearly due to the difference
of the representation of planning tasks, i.e., the difference

4However, for our set of planners, we note that we could re-
strict the analysis to the original formulation of CALDERA, in
which OSS-LM-cut solves 13 tasks like Delfi 1, and to ORGANIC-
SYNTHESIS-SPLIT, which dominates ORGANIC-SYNTHESIS for all
planners.

5In 13 ORGANIC-SYNTHESIS tasks, the translator runs out of
memory so that Delfi 2 cannot compute the problem description
graph. In 3 ORGANIC-SYNTHESIS-SPLIT and 2 NURIBAKE tasks,
the translator hits the time limit of 60s that we imposed for graph
computation. In all of cases, Delfi 2 cannot use its model for plan-
ner selection but uses the fallback planner DSK-lmc.
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Portfolio Components Delfi Orcl

DKS OSS 1 2

blind lmc P1 P2 M1 M2 M3 M4 blind lmc P1 P2 M1 M2 M3 M4 Sym

C (3721) 1470 1956 1836 1602 1796 1645 1767 1615 1472 1948 1838 1606 1782 1643 1707 1568 1867 2282 2236 2350

Table 1: Coverage of the training set. Abbreviations: lmc: LM-cut; P1: HC-PDB; P2: GA-ZOPDB; M1: B-SCCdfp; M2: B-
MIASMdfp; M3: B-sbMIASM; M4: G-SCCdfp; Sym: SymBA∗ 2014; Orcl: oracle portfolio over all component planners.

Portfolio Components Unif Delfi Orcl

DKS OSS 1 2

blind lmc P1 P2 M1 M2 M3 M4 blind lmc P1 P2 M1 M2 M3 M4 Sym

agricola (20) 5 0 7 5 6 0 10 5 6 0 7 6 6 0 6 6 13 7 12 11 14
caldera-comb (20) 12 13 16 13 12 0 12 12 12 13 16 13 12 0 12 12 12 13 13 11 16
data-network (20) 6 12 11 9 10 10 9 3 6 12 11 9 10 10 9 3 13 13 13 13 13
nurikabe (20) 10 12 12 11 11 12 12 11 10 12 12 11 11 11 11 11 11 10 12 11 12
org-syn-comb (20) 14 14 13 14 13 7 13 13 14 14 13 14 13 7 13 13 14 13 13 13 14
petri-net-al (20) 2 9 0 2 2 0 2 2 2 9 0 2 2 0 2 2 20 15 20 9 20
settlers (20) 8 9 0 0 9 9 8 9 8 9 0 0 9 9 8 9 9 6 9 8 9
snake (20) 11 7 14 11 11 7 11 10 11 7 14 11 11 6 11 10 4 10 11 7 14
spider (20) 11 11 14 11 11 0 11 3 11 11 14 11 11 0 11 3 7 13 11 7 14
termes (20) 7 6 12 10 10 10 11 6 7 6 12 10 10 10 11 6 18 13 12 15 18

Sum (200) 86 93 99 86 95 55 99 74 87 93 99 87 95 53 94 75 121 113 126 105 144

Table 2: Coverage of the test set (IPC 2018 benchmarks). Abbreviations: lmc: LM-cut; P1: HC-PDB; P2: GA-ZOPDB; M1:
B-SCCdfp; M2: B-MIASMdfp; M3: B-sbMIASM; M4: G-SCCdfp; Sym: SymBA∗ 2014; Unif: uniform portfolio over all
component planners; Orcl: oracle portfolio over all component planners.

Delfi 1 Delfi 2

agricola (20) Sym (20) Sym (19), OSS-P1 (1)
caldera (20) OSS-lmc (20) Sym (10), DKS-M2 (3), DKS-M1 (2), DKS-lmc (2)

DKS-P1 (1), DKS-M3 (1), OSS-lmc (1)
caldera-split (20) Sym (7), OSS-lmc (8), DKS-lmc (5) Sym (6), OSS-lmc (6), DKS-lmc (4), DKS-M4 (2), OSS-P1 (1), DKS-M1 (1)
data-network (20) Sym (17), OSS-lmc (3) Sym (16), OSS-M2 (3), OSS-P1 (1)
nurikabe (20) Sym (6), DKS-P1 (6), DKS-blind (2), OSS-P1 (2), Sym(12), DKS-lmc (3), OSS-M2 (2), DKS-M2 (1), time out (2)

DKS-lmc (2), DKS-M2 (1), OSS-lmc (1)
organic-synthesis (20) Sym (18), OSS-lmc (2) OSS-P1 (3), Sym(2), DKS-P1 (1), OSS-M2 (1), memory out (13)
organic-synthesis-split (20) Sym (20) Sym (14), OSS-lmc (2), DKS-P1 (1), time out (3)
petri-net-alignment (20) Sym (20) DKS-lmc (10), OSS-lmc (9), Sym(1)
settlers (20) OSS-lmc (20) Sym (20)
snake (20) OSS-M1 (9), OSS-P1 (7), DKS-P1 (2), Sym (2) DKS-lmc (12), Sym (8)
spider (20) DKS-M3 (6), DKS-M1 (6), OSS-M1 (5), DKS-lmc (3) Sym (16), DKS-lmc (3), OSS-lmc (1)
termes (20) DKS-M2 (20) Sym (10), DKS-lmc (6), OSS-M2 (4)

Sum 240 222 (13 memory out, 5 time out)

Symba 110 134
OSS-lmc 54 19
DKS-lmc 10 40
OSS-P1 9 6
DKS-P1 8 3
OSS-M1 14 0
DKS-M1 6 3
DKS-M2 21 4
OSS-M2 0 3
DKS-M3 6 1
DKS-blind 2 0

Table 3: Top: domain-wise number of tasks a planner is selected by our portfolios. Bottom: for each planner, number of times
it is selected by our portfolios in total.
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between the abstract structure graph (Delfi 1) and the prob-
lem description graph (Delfi 2). One important distinguish-
ing feature of this difference is that the problem descrip-
tion graph represents the grounded task (SAS+), which is
a specific representation that depends on the used grounding
and invariant synthesis algorithms, while the abstract struc-
ture graph represents the lifted representation (PDDL) of the
task.

In the benchmark set, there is an observable difference
that may explain the different choices to some extent: the
IPC 2018 domains exhibit much more conditional effects
than the domains of our training set. When we performed
initial experiments on the reduced training set (excluding
the IPC 2014 domains as a validation set), we observed that
using the problem description graph (Delfi 2) resulted in a
stronger performance than using the abstract structure graph
(Delfi 1) due to better choices of suitable planners. The same
is not true anymore when looking at the full training set
performance and the test set performance reported here. In
future work, we plan to further investigate the differences
in the representation of planning tasks and their impact on
planner selection.

To assess how well Delfi selects planners for a given task,
we also investigate which planners are required to achieve
oracle performance. Surprisingly, we found two set covers
of only size 3 that cover all tasks solved by any planner:
the first consists of Symba, DKS-M3, and DKS-P1, and the
second one of Symba, DKS-M3, and OSS-P1. In particular,
it is enough to consider Symba, one variant of PDB-based
planners, and one variant of merge-and-shrink-based plan-
ners (for NURIBAKE), and there is no need for LM-cut or
any of the other heuristics at all. While both variants of Delfi
frequently choose Symba and sometimes choose PDB-based
and merge-and-shrink-based planners, they choose LM-cut
the second most of times, even though this would not be
required. A possible reason is that LM-cut performs much
better on the training set than PDB-based and merge-and-
shrink-based planners and hence is more likely to be chosen
also on the test set.

Conclusions
In this planner abstract, we described the Delfi planners that
participated in the optimal classical track of the IPC 2018.
The Delfi planners are online portfolios that select a compo-
nent planner deemed suitable for the given task based on a
model learned with deep learning techniques. In particular,
to represent planning tasks, we used two graphical repre-
sentations for planning tasks, turned them into images and
used a convolutional neural network to learn a model that
predicts whether a planner solves a given task or not. The
performance of Delfi 1, taking the first place in the competi-
tion, showed that the learned model generalized well to the
new benchmarks used in the competition.

In future work, we would like to greatly extend the set of
component planners of our portfolio to evaluate how far the
performance of Delfi can be pushed if using many available
state-of-the-art planners. We also plan to investigate alterna-
tive learning techniques that operate directly on the graph

representations rather than relying on images created from
these graphs.
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Appendix
Collection of Planner Configurations
The following are the configurations for the 16 Fast Downward based planners.
1. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(blind,symmetries=sym,

pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

2. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(celmcut,symmetries=sym,

pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

3. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),

merge_strategy=merge_sccs(order_of_sccs=topological,merge_selector=score_based_filtering(scoring_functions=

[goal_relevance,dfp,total_order(atomic_before_product=false,atomic_ts_order=reverse_level,product_ts_order=

new_to_old)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,

threshold_before_merge=1,max_time=900),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

4. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),

merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[sf_miasm(

shrink_strategy=shrink_bisimulation,max_states=50000),total_order(atomic_before_product=true,

atomic_ts_order=reverse_level,product_ts_order=old_to_new)])),label_reduction=exact(before_shrinking=true,

before_merging=false),max_states=50000,threshold_before_merge=1,max_time=900),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

5. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_precomputed(

merge_tree=miasm(abstraction=miasm_merge_and_shrink(),fallback_merge_selector=score_based_filtering(

scoring_functions=[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=

new_to_old,atomic_before_product=false)]))),label_reduction=exact(before_shrinking=true,before_merging=false),

max_states=50000,threshold_before_merge=1,max_time=900),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

6. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=true),merge_strategy=merge_sccs(order_of_sccs=

topological, merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,

total_order(atomic_before_product=false, atomic_ts_order=level,product_ts_order=random)])),

label_reduction=exact(before_shrinking=true,before_merging=false),

max_states=infinity,threshold_before_merge=1,max_time=900),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

7. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(cpdbs(patterns=hillclimbing(max_time=900),transform=multiply_out_conditional_effects),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

8. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(zopdbs(patterns=genetic(pdb_max_size=50000,num_collections=5,num_episodes=30,

mutation_probability=0.01), transform=multiply_out_conditional_effects),symmetries=sym,

pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01), num_por_probes=1000)’

9. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(blind,symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

10. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(celmcut,symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

11. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_sccs(order_of_sccs=

topological, merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,

total_order(atomic_before_product=false, atomic_ts_order=reverse_level,product_ts_order=new_to_old)])),

label_reduction=exact(before_shrinking=true, before_merging=false),max_states=50000,threshold_before_merge=1,

max_time=900,prune_unreachable_states=false),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’
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12. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_stateless(merge_selector=

score_based_filtering(scoring_functions=[sf_miasm(shrink_strategy=shrink_bisimulation,max_states=50000),

total_order(atomic_before_product=true,atomic_ts_order=reverse_level,product_ts_order=old_to_new)])),

label_reduction=exact(before_shrinking=true,before_merging=false),

max_states=50000,threshold_before_merge=1,max_time=900,prune_unreachable_states=false),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

13. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_precomputed(merge_tree=

miasm(abstraction=miasm_merge_and_shrink(),fallback_merge_selector=score_based_filtering(scoring_functions=

[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,

atomic_before_product=false)]))),label_reduction=exact(before_shrinking=true,before_merging=false),

max_states=50000,threshold_before_merge=1,max_time=900,prune_unreachable_states=false),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

14. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=true),merge_strategy=merge_sccs(order_of_sccs=

topological, merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,

total_order(atomic_before_product=false,atomic_ts_order=level,product_ts_order=random)])),

label_reduction=exact(before_shrinking=true, efore_merging=false),max_states=infinity,

threshold_before_merge=1,max_time=900,prune_unreachable_states=false),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

15. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(cpdbs(patterns=hillclimbing(max_time=900),transform=multiply_out_conditional_effects),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

16. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(zopdbs(patterns=genetic(pdb_max_size=50000,num_collections=5,num_episodes=30,

mutation_probability=0.01), transform=multiply_out_conditional_effects),symmetries=sym,

pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01), num_por_probes=1000)’

Domains of the Training Set
The following lists contain all benchmark domains we used for training, named as in the repository under https://
bitbucket.org/SilvanS/ipc2018-benchmarks. Domains with the prefix ss are either additional domains not con-
tained in the original repository under https://bitbucket.org/aibasel/downward-benchmarks or copies of
already present domains containing additional tasks that we generated.

STRIPS domains:

[’airport’, ’barman-opt11-strips’, ’barman-opt14-strips’, ’blocks’,
’childsnack-opt14-strips’, ’depot’, ’driverlog’, ’elevators-opt08-strips’,
’elevators-opt11-strips’, ’floortile-opt11-strips’,
’floortile-opt14-strips’, ’freecell’, ’ged-opt14-strips’, ’grid’,
’gripper’, ’hiking-opt14-strips’, ’logistics00’, ’logistics98’, ’miconic’,
’movie’, ’mprime’, ’mystery’, ’nomystery-opt11-strips’,
’openstacks-opt08-strips’, ’openstacks-opt11-strips’,
’openstacks-opt14-strips’, ’openstacks-strips’, ’parcprinter-08-strips’,
’parcprinter-opt11-strips’, ’parking-opt11-strips’, ’parking-opt14-strips’,
’pathways-noneg’, ’pegsol-08-strips’, ’pegsol-opt11-strips’,
’pipesworld-notankage’, ’pipesworld-tankage’, ’psr-small’, ’rovers’,
’satellite’, ’scanalyzer-08-strips’, ’scanalyzer-opt11-strips’,
’sokoban-opt08-strips’, ’sokoban-opt11-strips’, ’storage’,
’tetris-opt14-strips’, ’tidybot-opt11-strips’, ’tidybot-opt14-strips’,
’tpp’, ’transport-opt08-strips’, ’transport-opt11-strips’,
’transport-opt14-strips’, ’trucks-strips’, ’visitall-opt11-strips’,
’visitall-opt14-strips’, ’woodworking-opt08-strips’,
’woodworking-opt11-strips’, ’zenotravel’, ’ss_barman’, ’ss_ferry’,
’ss_goldminer’, ’ss_grid’, ’ss_hanoi’, ’ss_hiking’, ’ss_npuzzle’,
’ss_spanner’,]

Domains with conditional effects:
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[’briefcaseworld’, ’cavediving-14-adl’, ’citycar-opt14-adl’, ’fsc-blocks’,
’fsc-grid-a1’, ’fsc-grid-a2’, ’fsc-grid-r’, ’fsc-hall’, ’fsc-visualmarker’,
’gedp-ds2ndp’, ’miconic-simpleadl’, ’t0-adder’, ’t0-coins’, ’t0-comm’,
’t0-grid-dispose’, ’t0-grid-push’, ’t0-grid-trash’, ’t0-sortnet’,
’t0-sortnet-alt’, ’t0-uts’, ’ss_briefcaseworld’, ’ss_cavediving’,
’ss_citycar’, ’ss_maintenance’, ’ss_maintenance_large’, ’ss_schedule’,]

Domain-wise Trainingset Performance

Portfolio Components Delfi Oracle

DKS OSS 1 2

blind lmc P1 P2 M1 M2 M3 M4 blind lmc P1 P2 M1 M2 M3 M4 Sym

airport (50) 27 29 31 28 27 2 27 27 27 29 31 28 27 2 27 27 27 27 29 32
barman-opt11-strips (20) 8 8 8 8 8 12 8 8 8 8 8 8 8 12 8 8 10 10 8 12
barman-opt14-strips (14) 3 3 3 3 3 6 3 3 3 3 3 3 3 6 3 3 6 6 3 6
blocks (35) 21 28 28 25 28 26 26 28 21 28 28 25 28 26 26 28 32 32 32 32
briefcaseworld (50) 8 9 8 8 9 8 8 9 8 9 8 8 8 8 8 8 8 9 8 9
cavediving-14-adl (20) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
childsnack-opt14-strips (20) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 6 6 6
citycar-opt14-adl (20) 18 18 18 18 18 10 18 18 18 18 18 18 17 10 17 18 18 18 18 18
depot (22) 6 9 12 8 9 12 11 10 6 9 12 8 9 12 9 10 7 12 9 12
driverlog (20) 8 14 13 13 13 14 13 14 7 14 14 13 13 14 13 14 14 15 14 15
elevators-opt08-strips (30) 17 22 22 20 19 19 19 12 17 22 22 20 19 19 19 5 25 25 25 25
elevators-opt11-strips (20) 15 18 18 17 16 16 16 10 15 18 18 17 16 16 16 3 19 19 19 19
floortile-opt11-strips (20) 8 14 8 8 9 10 12 8 8 14 8 8 9 10 10 8 14 12 14 14
floortile-opt14-strips (20) 8 20 8 8 9 11 14 8 8 20 8 8 9 11 11 8 20 17 20 20
freecell (80) 20 15 21 20 21 22 22 20 20 15 21 20 21 22 22 20 25 27 21 27
fsc-blocks (14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fsc-grid-a1 (16) 2 2 0 1 2 2 2 2 2 2 0 1 2 2 2 2 3 3 2 3
fsc-grid-a2 (2) 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
fsc-grid-r (16) 15 15 0 0 15 15 15 15 15 15 0 0 15 15 15 15 1 1 6 15
fsc-hall (2) 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1
fsc-visualmarker (7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ged-opt14-strips (20) 15 15 19 19 19 19 19 5 15 15 19 18 18 15 15 5 19 19 20 19
gedp-ds2ndp (24) 18 18 4 4 22 18 22 22 18 18 4 4 18 14 18 18 18 22 16 22
grid (5) 1 2 3 2 2 3 2 2 1 2 3 2 2 3 3 2 2 3 2 3
gripper (20) 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
hiking-opt14-strips (20) 17 13 19 19 19 19 19 18 17 13 19 19 19 19 19 17 19 18 19 20
logistics00 (28) 12 20 21 21 20 20 20 19 12 20 20 20 20 20 20 19 19 21 21 21
logistics98 (35) 2 6 5 5 5 5 5 5 2 7 5 6 5 5 5 5 6 7 6 7
miconic (150) 56 142 61 61 84 78 61 57 56 142 61 61 85 78 61 56 109 143 142 144
miconic-simpleadl (150) 80 144 81 82 87 87 86 80 80 144 80 81 87 87 86 80 149 149 144 150
movie (30) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
mprime (35) 18 23 24 23 23 21 23 23 20 22 25 23 24 21 23 24 24 25 24 26
mystery (30) 15 18 17 17 17 16 16 17 15 18 18 17 17 16 17 17 15 18 15 19
nomystery-opt11-strips (20) 9 16 20 20 20 20 20 14 9 16 20 20 20 20 20 14 16 18 16 20
openstacks-opt08-strips (30) 24 23 24 24 24 24 23 9 24 23 24 24 24 24 23 9 30 30 30 30
openstacks-opt11-strips (20) 18 18 18 18 18 18 18 4 18 18 18 18 18 18 18 4 20 20 20 20
openstacks-opt14-strips (20) 5 3 5 5 5 5 3 0 5 3 5 5 5 5 3 0 20 20 20 20
openstacks-strips (30) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 20 19 7 20
parcprinter-08-strips (30) 30 30 29 30 27 9 26 30 30 30 29 30 22 9 24 30 22 28 30 30
parcprinter-opt11-strips (20) 20 20 20 20 20 5 19 20 20 20 20 20 17 5 17 20 17 20 20 20
parking-opt11-strips (20) 0 3 8 1 2 1 1 8 1 3 8 1 2 4 1 8 1 8 8 8
parking-opt14-strips (20) 0 4 7 0 5 4 1 7 0 3 8 0 4 4 3 8 3 8 8 8
pathways-noneg (30) 4 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5
pegsol-08-strips (30) 28 29 30 28 30 29 29 28 28 29 30 29 30 29 29 20 29 30 30 30
pegsol-opt11-strips (20) 18 19 20 18 20 19 19 18 18 19 20 19 20 19 19 10 19 20 20 20
pipesworld-notankage (50) 20 21 25 23 21 4 20 20 20 21 25 24 21 4 20 20 15 25 22 25
pipesworld-tankage (50) 17 17 20 17 17 16 17 21 17 16 21 17 17 17 19 20 16 21 17 22
psr-small (50) 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
rovers (40) 7 12 11 10 9 11 11 9 7 12 11 10 9 11 10 9 14 14 13 14
satellite (36) 7 14 9 9 9 9 9 9 7 14 9 9 9 9 9 9 10 14 11 14
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scanalyzer-08-strips (30) 15 17 17 15 16 18 17 6 15 17 18 16 19 19 17 6 12 19 15 19
scanalyzer-opt11-strips (20) 11 14 13 11 12 14 13 3 11 14 14 12 15 15 13 3 9 15 12 15
sokoban-opt08-strips (30) 28 30 30 28 30 26 30 28 28 30 30 28 30 26 28 28 28 30 29 30
sokoban-opt11-strips (20) 20 20 20 20 20 16 20 19 20 20 20 20 20 16 20 19 20 20 20 20
ss barman (33) 10 8 12 10 11 10 13 10 10 8 14 11 11 10 11 10 24 23 24 24
ss briefcaseworld (110) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ss cavediving (100) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 29 30 30 30 30 30
ss citycar (288) 15 22 16 16 12 0 11 14 15 20 15 15 12 0 11 14 24 26 28 31
ss ferry (132) 78 122 95 94 89 89 90 64 80 122 95 94 89 90 89 64 108 123 122 122
ss goldminer (144) 50 79 102 53 98 62 80 50 50 80 102 53 98 62 97 50 75 102 102 102
ss grid (108) 52 50 74 58 58 60 58 56 52 50 74 58 58 60 72 56 91 89 90 91
ss hanoi (30) 13 10 13 13 13 13 13 13 13 10 13 13 13 13 13 13 13 13 13 13
ss hiking (112) 74 56 85 82 79 84 78 76 74 56 86 84 81 85 81 78 90 93 92 96
ss maintenance (128) 0 45 65 0 10 26 11 11 0 44 65 0 9 24 8 2 0 64 64 67
ss maintenance large (100) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ss npuzzle (30) 6 6 12 12 6 6 6 12 6 6 12 12 6 6 6 12 9 12 12 12
ss schedule (168) 63 148 130 95 158 144 135 156 64 147 131 98 152 145 119 158 0 158 163 163
ss spanner (132) 86 89 95 86 95 95 132 95 82 85 92 82 92 92 89 92 132 132 132 132
storage (30e) 16 17 18 16 18 18 18 17 17 17 19 17 18 19 17 18 15 19 16 19
t0-adder (2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t0-coins (30) 10 15 0 9 10 10 10 10 10 15 0 9 10 10 10 10 15 15 16 16
t0-comm (25) 5 6 5 5 5 5 5 5 5 6 5 5 5 5 5 5 15 15 15 15
t0-grid-dispose (15) 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 1 3 3
t0-grid-push (5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t0-grid-trash (1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t0-sortnet (5) 2 2 0 0 2 0 2 2 2 2 0 0 2 0 2 2 0 1 2 2
t0-sortnet-alt (6) 4 4 1 1 4 4 4 4 4 4 1 1 4 4 4 4 2 2 4 4
t0-uts (29) 6 8 10 7 10 10 10 10 6 9 11 7 11 11 11 11 6 9 9 11
tetris-opt14-strips (17) 12 11 13 12 13 1 13 13 12 11 12 12 13 1 13 13 10 13 10 13
tidybot-opt11-strips (20) 10 17 15 13 11 1 11 10 10 17 15 13 11 1 10 10 14 17 17 17
tidybot-opt14-strips (20) 1 13 11 8 3 0 3 2 1 13 11 8 3 0 2 2 6 13 12 13
tpp (30) 7 8 7 7 9 12 8 7 7 8 7 8 9 11 8 7 8 11 11 12
transport-opt08-strips (30) 11 11 11 12 11 11 11 11 11 11 12 12 11 11 12 11 14 14 13 14
transport-opt11-strips (20) 6 7 7 8 6 7 6 6 6 7 8 8 7 7 8 7 10 9 10 10
transport-opt14-strips (20) 7 6 7 7 7 7 7 7 7 6 7 7 7 7 7 7 9 9 9 9
trucks-strips (30) 9 12 11 10 9 10 10 9 9 12 11 10 9 10 10 9 12 12 11 12
visitall-opt11-strips (20) 9 12 16 13 9 10 9 16 9 12 14 12 9 10 9 14 12 17 17 17
visitall-opt14-strips (20) 3 6 12 7 4 4 4 12 3 6 8 6 4 4 4 8 7 13 14 14
woodworking-opt08-strips (30) 22 30 23 22 30 30 30 28 22 30 23 22 30 30 22 28 28 30 30 30
woodworking-opt11-strips (20) 16 20 17 16 20 20 20 20 16 20 17 16 20 20 16 20 20 20 20 20
zenotravel (20) 8 13 12 11 12 12 11 11 8 13 12 11 12 13 11 11 11 12 12 13

Sum (3721) 1470 1956 1836 1602 1796 1645 1767 1615 1472 1948 1838 1606 1782 1643 1707 1568 1867 2282 2236 2350

Table 4: Coverage of the trainingset. Abbreviations: lmc: LM-cut; P1: HC-PDB; P2: GA-ZOPDB; M1: B-SCCdfp; M2: B-
MIASMdfp; M3: B-sbMIASM; M4: G-SCCdfp; Sym: SymBA∗ 2014; Orcl: oracle portfolio over all component planners.
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Abstract

The automated construction of search heuristics is a
long-term aim in artificial intelligence, while pattern
databases (PDBs) serve as memory-based abstraction
heuristics generated prior to the search to reduce com-
putational efforts.
In the competing IPC 2018 system Planning-PDB we
have taken a state of the art planner (Franco et al., 2017)
and augmented a part of its pattern selection process,
namely the bin packing subroutine, to improve the qual-
ity of the patterns.

Introduction
The automated generation of search heuristics is one of
the long time goals of AI and goes back to early work of
Gaschnig (1979), Pearl (1985), and Preditis (1993). Heuris-
tics refer to state-space abstractions, and for lower-bound
estimates each path in the original state space has to map
to a corresponding —possibly shorter one— in the abstract
state space.

Searching with heuristics based on abstractions has yield
many positive results (e.g, Holte, Grajkowski and Tanner,
2005), but also showed one major drawback: in the worst
case, the time used in searching the abstract state spaces may
exceed the time saved for searching the overall search space
(Valtorta, 1984).

With the advent of pattern databases (PDBs), for the com-
putational effort in searching the abstract state spaces is
spent prior to the search. In concrete space search only
lookups have to be executed. This research initiated by Cul-
berson and Schaeffer (1998) let to a revival of the interest
in abstraction heuristics. Initial results in sliding-tile puzzles
quickly carried over to a number of combinatorial search do-
mains, and helped to solve random instances of the Rubik’s
cube optimally for the very first time (Korf, 1997).

The complete exploration of the abstract state space yields
a lower bound, and can be extended to include action cost.
The combination of several databases into one, however, is
tricky (Haslum, Botea, Helmert, Bonet, and Koenig, 2007).
While the maximum of two PDBs is always a lower bound,
the sum is usually not. Disjoint PDBs (Felner, Korf, 2004)
showed that with a clever selection of disjoint patterns ad-
missibility can be preserved. Holte et al. (2004) showed that

in several cases, the combination of many small PDBs can
outperform a large one.

The use of PDBs in AI planning was pioneered by
Edelkamp (2001). Initially, the notion of a pattern as a selec-
tion of tiles (or a set of labels in Rubik’s cube) has been gen-
eralized to state-spaces in vector notation (Holte and Hernd-
vlgyi, 1999). Most AI planning problems can be translated
into a state-space of finite domain variables (Helmert, 2004),
so that a selection of variables leads to projections of pre-
and postconditions of actions.

The main limitation of PDBs is the amount of mem-
ory needed, as during their construction process, the ab-
stract state space may prove to be too large for the avail-
able resources in RAM. To deal with these large memory re-
quirements, PDBs have been extended to support symbolic
search, which succinctly represents state sets compactly as
binary decision diagrams (Edelkamp, 2002). Still, the auto-
mated selection of the most informative patterns remains a
combinatorial challenge. There is an exponential number of
variable sets to choose from, not counting alternative pro-
jection and cost partitioning methods (Karpas, Katz, and
Markovitch, 2011; Pommerening, 2017) in distributing the
cost of actions over different abstract search spaces.

Hence, the automated selection of possibly additive
heuristics requires approximations. Hill-climbing strategies
have been proposed (Haslum, Botea, Helmert, Bonet, and
Koenig, 2007), where a PDB on (n − 1) variables serves
as an estimate for a PDB on n variables, as well as more
general optimization schemes such as genetic programming
(Edelkamp, 2007; Franco et al. 2017). They are using the
bitvector of variables selected as genes and the quality of
the PDB as the fitness function.

The quality of the PDBs – in terms of the returned lower
bound on the solution cost – can only be estimated. Usually,
this involves first generating the PDB and then evaluating
it, taking the average heuristic estimate (Edelkamp, 2001)
or a weighted sum (Korf, 1997), or sampling the state space
(Franco et al., 2017).

For participating in the international planning competition
2018, we have started our implementation efforts by taking
a state-of-the-art planner (Franco et al, 2017) and came up
with new ways to improve the automated pattern selection
process.

We first briefly define the setting of cost-optimal action
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planning and give a characterization of the pattern database
selection problem. Afterwards, we move our focus to the ge-
netic encoding of the problem and what fitness function we
have used for determining the PDBs. We concentrate on the
pattern database equivalent of the NP-hard bin packing prob-
lem (BPP) for choosing sets of informative pattern database
that are known to respect the limits in main memory. As so-
lutions for the the BPP, we consider several different algo-
rithmic approaches.

Problem Statement
Even though many planning domains are lifted int the tex-
tual PDDL input, in the formal description, we start with
grounded planning problems in SAS+ representation, as
usually generated by a planner in its static analysis stage. A
sequential planning task P , is characterized as a quadruple
consisting of finite-domain state variables V , initial state I,
goal condition G, and operators (grounded actions) O with
pre- and postconditions pre(o), eff(o), o ∈ O. For the sake
of simplicity, we consider all conditions as conjunctions of
state variable assignments (the planner itself deals with a
much larger PDDL fragment, including ADL constructs and
conditional effects). Each operator o is associated with a cost
c(o), whose sum has to be minimized over all plans that lead
from the initial state to one of the goals.

The state-space S induced by such planning task can be
viewed as a subset of the cross product of the domains rep-
resenting the state variables, i.e., for V = {v1, . . . , vn} we
have S ⊆ dom(v1)× . . .× dom(vn), where dom(v) is the
finite domain of possible value assignments to v. The set of
reachable states is generated on-the-fly, starting with the ini-
tial state via applying the operators.

A heuristic h is a mapping of the set of states S to the
positive reals R≥0. Usually, we have h(s) = 0, if and only
if a state s satisfies the goal condition. The heuristic is called
admissible, if h(s) is a lower bound of the cost of all goal-
reaching plans starting at s. Two heuristics h1 and h2 are
additive, if h defined by h(s) = h1(s)+h2(s) for all s ∈ S,
is admissible. It is consistent (the usual case for PDBs), if
for operator o from s to s′ we have h(s′)−h(s)+ c(o) ≥ 0.
For admissible heuristics, search algorithms like A* (Hart
et al, 1968) will return optimal plans. Moreover, if h is also
consistent, no reopening takes place.

A state space abstraction φ is a mapping from states in
the original state space S to the states in the abstract state
space A. As the problem is implicitly given, the abstraction
is generated by abstracting the operators, the initial state and
the goal conditions. Plans in the original space have coun-
terparts in the abstract space, but not vice versa. A pattern
database is a lookup table that for each abstract state a pro-
vides the (minimal) cost value from a to the set of abstract
goal states. This value, in turn, is a lower bound for reaching
the goal of the state that is mapped to a in the original state
space.

PDBs are generated in a backwards enumeration of the
abstract state space starting with the abstract goal descrip-
tion. As this assumes that operators to be reversible, in ex-
plicit search, the set of reachable states may have to gener-
ated beforehand. There are options to invert planning oper-

ators, but for an underspecified goal state, backward search
can be cumbersome. In symbolic search with BDDs going
backward is much more natural.

Showing that PDBs yield heuristics that are both con-
sistent and admissible is rather trivial (Edelkamp, 2000;
Haslum et al., 2005), as we construct them on an fully gen-
erated abstracted state-space. It has also been shown that for
planning PDBs the sum of heuristic values obtained via pro-
jection to a disjoint variable set is admissible (Edelkamp,
2001). The projection of state variables induces a projection
of operators and is a special case of what is called 0/1 parti-
tioning. In a 0/1 partitioning, the operators in abstract space
are mapped to either 0 or c(o), so that on operator cannot
contribute to more than one PDB. There are complex ver-
sions of cost partitioning, that distribute fractional cost of
operators o, still adding to at most c(o), to several abstract
state spaces (Pommerening, 2017).

For ease of notation, we identify a pattern database with
its abstraction function φ. As we want to optimize pattern
selection via a genetic algorithms, the fitness f of a pattern
database φ (and represented as a set of pairs (a, h(a)) ∈ φ)
is the average heuristic estimate

f(φ) =
∑

(a,h(a))∈φ
h(a)/|φ|,

where |φ| denotes the size of the pattern databases de-
noted by φ.

The storage of one PDB in explicit search is a (perfect)
hash table, while in symbolic search all abstract states of a
certain heuristic value are kept succinctly in form of a BDD.

For several PDBs φ1, . . . , φl and cost partitioning func-
tion γ, the values are added up. We have

f(φ1, . . . , φl) =
l∑

i=1

∑

(a,hi,γ(a))∈φi
hi,γ(a)/|φi|.

As each PDB consumes a significant amount of space,
the pattern selection problem is to find a selection of pattern
databases that fit into main memory, and optimizes f .

One very simple PDB called the perimeter, is an unab-
stracted backward search until resources are exhausted, set-
ting the value of all unreached abstract space to the max-
imum perimeter reached. In several simpler planning task,
the perimeter PDB search already solved the planning prob-
lem. The unexpected good results of the otherwise blind
bidirectional symbolic baseline planner illustrates the power
of this search component.

Genetic Algorithms for Pattern Selection
A genetic algorithm (Holland, 1975) is a general optimiza-
tion method, and has been identified, e.g., by Schwefel as
a member of the class defined as evolutionary strategies. It
refers to the recombination, selection, and mutation of genes
(states in a state-space) to optimize the fitness (alias objec-
tive) function.

In a genetic algorithm (GA), a population of candidate
solutions to an optimization problem is sequentially evolved
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v1 v2 v3 v4 v5 v6 v7 v8
PDB1 0 0 0 0 0 1 0 1
PDB2 0 1 0 0 0 0 1 0
PDB3 0 1 0 0 1 0 0 0
PDB4 0 0 1 1 0 0 0 0

Table 1: An example set of pattern (database) variable selec-
tion, forming a 0/1 GA bitstring providing one solution of
the bin packing problem.

to generate a better performing population of solutions, by
mimicing the process of evolution. Each candidate solution
has a set of properties which can be mutated and recom-
bined. Traditionally, candidate solutions are represented as
0/1 bitstrings, but there are other evolutionary strategies that
work on real-valued state vectors.

For the Pattern-PDB competing planner in IPC 2018, a
binary representation of the genes was sufficient. An early
approach for the automated selection of (projection) PDB
variables by Edelkamp (2007) employed a GA with genes
representing state-space variable patterns in the form of a 0/1
matrix G, where Gi,j denotes that state variable i is chosen
in PDB j (see Table 1). Besides flipping and setting bits,
mutations may also add and delete PDBs in the set.

In this setting, in ordert to evaluate the fitness function,
the corresponding PDBs has to be generated – a time-
consuming operation, which nevertheless pays off in most
cases. The approach has been refined by sampling tech-
niques (Lelis et al., 2016; Franco et al. 2017), which is now
available in the fast-downward planning system (Helmert,
2006).

The PDBs corresponding to the bitvectors in the GA have
to fit into main memory, so we have to restrict the generation
of offsprings to the ones that represent a set of PDB that fit
into RAM. If time becomes an issue we also have to stop
evolving patterns to invoke the overall search (in our case
progressing explicit states) eventually.

An alternative for pattern selection, which is also used as
a subroutine within the GA, is to apply bin packing.

Bin Packing for Pattern Selection
The bin packing problem (BPP) is one of the first problems
shown to be NP-hard (Garey and Johnson, 1979). Given ob-
jects of integer size a1, . . . , an and maximum bin sizeC, the
problem is to find the minimum number of bins k so that the
established mapping f : {1, . . . , n} → {1, . . . , k} of ob-
jects to bins maintains

∑
f(a)=i a ≤ C for all i ≤ k. The

problem is NP-hard in general, but there are good approxi-
mation strategies such as first-fit and best-fit decreasing (be-
ing at most 11/9 off the optimal solution (Dósa, 2007). The
NP-reduction from number partitioning (where a set of ob-
jects must be split into two equally-sized parts) fits into one
sentence: if

∑n
i=1 ai is odd, then number partitioning is not

solvable; and if
∑n
i=1 ai is even, then the objects have a per-

fect fit into two bins of size
∑n
i=1 ai/2.

In the PDBs selection process, however, the definition of
the BPP is slightly different. We estimate the size of the PDB

by computing the product (not the sum) of the variable do-
main sizes, so that for a maximum bin capacity M imposed
by the available memory, we find the minimum number of
bins k, so that the established mapping f of objects to bins
maintains

∏
f(a)=i a ≤ M for all i ≤ k. By taking the logs

on both sides, we are back to sums, but the sizes become
fractional. In this case,

∏
f(a)=i is an upper bound on the

number of abstract states needed. This is true for both ex-
plicit and symbolic pattern databases.

Taking the product of variable domains is a coarse upper
bound. In some domains, the abstract state spaces are much
smaller. Bin packing chooses the memory bound on each
individual PDB, instead of limiting their sum. Moreover,
for symbolic search, the correlation between the cross prod-
uct of the domains and the memory needs is rather weak.
However, by its simplicity and effectiveness this form of bin
packing currently is the state-of-the-art for PDB construc-
tion in planning. Generalizations to other variable abstrac-
tions and cost partitionings are possible.

As bin packing is pseudo-polynomial, small integer
weights in the input lead to a polynomial-time dynamic pro-
gramming algorithm (Garey and Johnson, 1979). Moreover,
for this case, there are effective bin completion strategies
that are featured in depth-first branch-and-bound algorithms
for bin packing (Korf 2002, 2003). The key property that
makes the bin completion efficient is a dominance condi-
tion on the feasible completions of a bin. The algorithm that
partitions the objects into included, excluded and remaining
ones relies on perfectly fitting elements and forced assign-
ments, and thus, on integer values for a. In the given setting
of real-valued object sizes that are multiplied (or logarithms
that are added) this might be less often the case.

By limiting the amount of optimization time for each BPP,
we do not insist on optimal solutions, but we want fast ap-
proximation strategies that are close-to-optimal. Recall that
suboptimal solutions to the BPP do not mean suboptimal
solutions to the planning problem. In fact, all solutions to
the BPP lead to admissible heuristics and therefore optimal
plans.

For the sake of generality, we strive for solutions to the
problem, which do not include problem-specific knowledge
but still work efficiently. Using a general framework also en-
ables us to participate in future solver developments. There-
fore, we decided for the moment to focus on the First-Fit
on-line algorithm1.

There are many approximation algorithms for bin pack-
ing. First-fit increasing is a fast on-line approximation algo-
rithm that first sorts the objects according to their sizes and,
then, starts placing the objects into the bins, putting an object
to the first bin it fits into. In terms of planning, the variables
are sorted by the size of their domains in a decreasing order.
Next, the biggest variable is chosen and packed at the same
bin with the rest of variables which are related to it if there
are space enough in the bin. This process is repeated until
all variables are processed.

1Even though in principle, BPP can be specified as a PDDL
planning problem on its own, initial experiments of solving such a
specification with off-the-shelf-planners were not promising.
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For the sake of completeness, we provide its trivial imple-
mentation.

int firstfit() {
int c=0; double bin[n];
for (int i=0;i<n;i++) bin[i] = C;
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
if (bin[j]-a[i] >=0) {
bin[j]-=a[i]; break; }

for(int i=0;i<n;i++)
if (bin[i] != C) c++;

return c;
}

International Planning Competition 2018
For the International Planning Competition 2018, we have
worked taken a planner that we considered to be state of the
art (Franco et al, 2017), and have tried to improve it adding
different Bin Packing algorithms in the process of pattern
selection. Because of time constraints, we could not add or
test different solutions to the BPP (based on Monte-Carlo
tree search of Constraint Programming) inside of the plan-
ner and check reliably if it worked better than the on-line al-
gorithms, so we entered the competition without. However,
that is going to be added for future work.

Results
Following the announcement of the results at ICAPS 2018,
we have started analyzing the results, first by reviewing the
competition logs, which were made available on the compe-
titions website2, and afterwards by running different config-
urations on the competition benchmarks (see Table 2) on our
cluster that utilized Intel Xeon E5-2660 V4 with 2.00GHz
processors. We compare this version with MinizincPDBs
(Moraru et al, 2018), one that solves the pattern selection
problem by encoding it into a Constraint Programming prob-
lem. For our experiments, we tested on four versions, the
first being the competition version, using 900 seconds for
optimization and having a perimeter heuristic, then varia-
tions with 300 seconds of optimization and with no perime-
ter.

Looking at Table 2, we deduce that there was little param-
eter optimization we could have done for this competition,
even though an Oracle planner could have combined our dif-
ferent version to manage to tie the winner of the competition.
The perimeter heuristic is vital for a domain like Petri-net-
alignment, while the difference in the time allocated for the
GA isn’t as important as we were expecting.

Concluding Remarks
This years results are very satisfactory for us on a whole.
Our planner was only four instances away from the winning
planner, and had some interesting results in comparison with
it’s sister planner, Complementary. From an analysis of the
competition logs, the best performing 5 out of 6 planners
were based on our inventions of pattern database abstraction

2https://ipc2018-classical.bitbucket.io/#planners

heuristics and/or symbolic search, while the winning port-
folio planner used systems based on such planners for more
than half of its successful results. This reassures us that in
our research we are working on the edge of best perform-
ing cost-optimal planning techniques and that more research
work on this can lead to a very well rounded domain inde-
pendent cost-optimal planner.
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Fast Downward Remix is a portfolio planner, based on
the Fast Downward planning system (Helmert 2006). It uses
the greedy algorithm by Streeter, Golovin, and Smith (2007)
to compute a sequential static portfolio of Fast Down-
ward configurations in an offline preprocessing phase. Fast
Downward Remix participated in the sequential satisficing,
bounded-cost and agile tracks of the International Planning
Competition (IPC) 2018.

Definitions
Before we describe the greedy portfolio computation algo-
rithm, we give some definitions concerning planning tasks,
sequential portfolios and quality metrics.

Informally speaking, a classical planning task consists of
an initial state, a goal description and a set of operators. In
the setting of satisficing planning, solving a planning task
entails finding any operator sequence that leads from the
initial state to a goal state, with a preference for cheap so-
lutions. On the other hand, in the setting of agile planning,
the task is to find solutions as fast as possible, regardless of
the solution cost. The third setting we consider in this plan-
ner abstract is bounded-cost planning, where plans must not
be more expensive than a given bound.

We define c(A, I, t) as the cost of the solution a planning
algorithm A finds for planning task I within time t, or as
∞ if it does not find a solution in that time. Furthermore,
we let c?(I) denote the minimum known solution cost for
task I (approximated by a set of Fast Downward configura-
tions). Following IPC evaluation criteria, we define the solu-
tion quality qsol(A, I, t) = c?(I)

c(A,I,t) as the minimum known
solution cost divided by the solution cost achieved by A in
time t.

A sequential planning portfolio P is a sequence of pairs
〈A, t〉 where A is a planning algorithm and t ∈ N>0 is the
time limit in seconds for A. We denote the portfolio resulting
from appending a component 〈A, t〉 to a portfolio P by P ⊕
〈A, t〉.

We now define two quality scores q(P, I) that evaluate the
performance of a portfolio P on task I . In the satisficing and
bounded-cost settings we use the solution quality qsol(P, I).
It is the maximum solution quality any of the components in
P achieves for I , i.e.,

Algorithm 1 Greedy algorithm by Streeter, Golovin, and
Smith (2007) computing a sequential portfolio for a given
quality function q, algorithms A, instances I and total port-
folio runtime T .

1: function COMPUTEPORTFOLIO(q, A, I, T )
2: P ← 〈〉
3: tused ← 0
4: while tmax = T − tused > 0 do
5: 〈A, t〉 ← argmax〈A′,t′〉∈A×[1,tmax] q∆(P,A′, t′, I)
6: if q∆(P,A, t, I) = 0 then
7: return P
8: P ← P ⊕ 〈A, t〉
9: tused ← tused + t

10: return P

qsol(P, I) = max
〈A,t〉∈P

qsol(A, I, t).

Following IPC 2018 evaluation criteria, for the agile plan-
ning setting we define agile quality as

qagile(P, I) =





0 if t(P, I) > T

1 if t(P, I) ≤ 1

1− log10 t(P,I)
log10(T ) otherwise

,

where t(P, I) is the time that portfolio P needs to solve task
I and T is the total portfolio runtime.

A portfolio’s score on multiple tasks A is defined as the
sum of the individual scores, i.e., q(P, I) = ∑

I∈I q(P, I),
and the score of the empty portfolio is always 0.

Greedy Portfolio Computation Algorithm
We now describe the greedy algorithm by Streeter, Golovin,
and Smith (2007). Given a quality score q, a set of algo-
rithms A, a set of tasks I and the total portfolio runtime T ,
the greedy algorithm iteratively constructs a sequential port-
folio.

As shown in Algorithm 1, the procedure starts with an
empty portfolio P (line 2) and then iteratively selects an al-
gorithm A ∈ A and a time limit t ∈ [1, tmax] (discretized
to seconds) for A such that adding 〈A, t〉 to P improves P
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the most (line 5). The quality improvement between P and
P ⊕ 〈A, t〉 is measured by the q∆ function:

q∆(P,A, t, I) =
∑

I∈I q(P ⊕ 〈A, t〉, I)− q(P, I)

t

If appending the pair 〈A, t〉 to P does not change the
portfolio quality anymore, we converged and can terminate
(line 6). Otherwise, the pair is appended to P (line 8). This
process iterates until the sum of the runtimes in the portfo-
lio components exceeds the maximum porfolio runtime T
(line 4).

Training Benchmark Set
Our set of training instances consists of almost all tasks
from the satisficing tracks of IPC 1998–2014 plus tasks from
various other sources: compilations of conformant planning
tasks (Palacios and Geffner 2009), finite-state controller
synthesis problems (Bonet, Palacios, and Geffner 2009),
genome edit distance problems (Haslum 2011), alarm pro-
cessing tasks for power networks (Haslum and Grastien
2011), and Briefcaseworld tasks from the FF/IPP domain
collection.1 In total, we use 2115 training instances.

Planning Algorithms
We collect our input planning algorithms from several
sources. First, we use the component algorithms of the fol-
lowing portfolios that participated in the sequential satisfic-
ing track of IPC 2014:

• Fast Downward Cedalion (Seipp, Sievers, and Hutter
2014; Seipp et al. 2015): 18 algorithms2

• Fast Downward Stone Soup 2014 (Röger, Pommerening,
and Seipp 2014): 27 algorithms3

• Fast Downward Uniform (Seipp, Braun, and Garimort
2014): 21 algorithms

Second, for each of the 66 algorithms A above, we add
another version A′ which only differs from A in that A′ uses
an additional type-based open list (Xie et al. 2014) with the
type (g), i.e., the distance to the initial state. Both A and A′

alternate between their open lists (Röger and Helmert 2010).
Third, we add 12 different variants of the configuration

used in the first iteration of LAMA 2011 (Richter, Westphal,
and Helmert 2011). We vary the following parameters:

• preferred successors first ∈ {true, false}:
Consider states reached via preferred operators first?

• randomize successors ∈ {true, false}:
Randomize the order in which successors are generated?4

1http://fai.cs.uni-saarland.de/hoffmann/
ff-domains.html

2The only change we make to the algorithms is disabling the
YAHSP lookahead (Vidal 2004).

3We ignore the anytime algorithm which is run after a solution
has been found.

4When randomizing successors and considering preferred suc-
cessors first, randomization happens before preferred successors
are moved to the front.

• additional type-based open list ∈ {none, (g), (hFF, g)}:
Alternate between only the original open lists used by
the first iteration of LAMA 2011 or include an additional
type-based open list (Xie et al. 2014) with the type (g) or
(hFF, g)?
In total, this leaves us with (18 + 27 + 21) · 2 + 12 =

144 planner configurations as input of the greedy portfolio
computation algorithm.

Resulting Portfolios
Passing the algorithms and benchmarks described above to
the greedy portfolio computation algorithm, together with
the quality score qsol and time limit T=1800 seconds, we
obtain a portfolio for the satisficing and bounded-cost tracks
that consists of 150 component algorithms, 104 of which are
unique. (The greedy algorithm often adds the same planner
configuration multiple times with different time limits.) The
minimum and maximum time limit are 1 and 149 seconds.
On the training set, the portfolio achieves an overall quality
score of 2003.89, which is much better than the best compo-
nent algorithm with a score of 1650.40. If we had an oracle
to select the best algorithm (getting allotted the full 1800
seconds) for each instance, we could reach a total score of
2073.

When we use the qagile score and a time limit of 300
seconds the resulting portfolio achieves an agile score of
1743.62 points, while the best single algorithm scores
1718.22 points. The agile portfolio consists of 47 configura-
tions, 37 of which are unique. They are run with time limits
ranging from 1 to 36 seconds.

Executing Sequential Portfolios
In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequential
order unspecified. With the simplifying assumption that all
planner runs use the full assigned time and do not commu-
nicate information, the order is indeed irrelevant. In reality
the situation is more complex.

First, the Fast Downward planner uses a preprocessing
phase that we need to run once before we start the port-
folio, so we do not have the full 1800 seconds available.5
Therefore, we treat per-algorithm time limits defined by the
portfolio as relative, rather than absolute values: whenever
we start an algorithm, we compute the total allotted time of
this and all following algorithms and scale it to the actually
remaining computation time. We then assign the respective
scaled time to the run. As a result, the last algorithm is al-
lowed to use all of the remaining time.

Second, in the satisficing setting we would like to use the
cost of a plan found by one algorithm to prune the search
of subsequent planner runs (in the bounded-cost and agile
setting we stop after finding the first valid plan). We there-
fore use the best solution found so far for pruning based on

5The preprocessing phase consists of converting the input
PDDL task (Fox and Long 2003) into a SAS+ task (Bäckström and
Nebel 1995) with the Fast Downward translator component and
pruning irrelevant operators via computing h2 mutexes (Alcázar
and Torralba 2015)
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g values: only paths in the state space that are cheaper than
the best solution found so far are pursued.
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This planner abstract describes “Scorpion”, the planner
we submitted to the sequential optimization track of the In-
ternational Planning Competition 2018. Scorpion is imple-
mented in the Fast Downward planning system (Helmert
2006). It uses A∗ (Hart, Nilsson, and Raphael 1968) with an
admissible heuristic (Pearl 1984) to find optimal plans. The
overall heuristic is based on component abstraction heuris-
tics that are combined by saturated cost partitioning (Seipp
and Helmert 2018).1

In this abstract we only list the components of Scorpion
and the settings we used for them. For a detailed description
of the underlying algorithms we refer to Seipp (2018).

Abstraction Heuristics
Depending on whether or not a given task contains condi-
tional effects, we use a different set of abstraction heuristics.

Tasks Without Conditional Effects
For tasks without conditional effects we use the combination
of the following heuristics:

• Cartesian abstraction heuristics (CART):
We consider Cartesian abstractions of the landmark and
goal task decompositions (Seipp and Helmert 2018). We
limit the total number of non-looping transitions in all ab-
stractions underlying the Cartesian heuristics by one mil-
lion.

• pattern databases found by hill climbing (HC):
We use the algorithm by Haslum et al. (2007) for search-
ing via hill climbing in the space of pattern collections.
We limit the time for hill climbing by 100 seconds.

• pattern databases for systematic patterns (SYS):
We use a procedure that generates all interesting patterns
up to size 2 (Pommerening, Röger, and Helmert 2013).

Tasks With Conditional Effects
For tasks with conditional effects we compute pattern
database heuristics for systematically generated patterns of
sizes 1, 2 and 3 (Pommerening, Röger, and Helmert 2013).
Since generating these heuristics can take very long for some

1We chose the name “Scorpion” since it contains the letters
s(aturated) c(ost) p(artitioning) in this order.

tasks, we limit the time for generating PDB heuristics by 300
seconds.

Saturated Cost Partitioning
We combine the information contained in the compo-
nent heuristics with saturated cost partitioning (Seipp and
Helmert 2018). Given an ordered collection of heuristics,
saturated cost partitioning iteratively assigns each heuris-
tic h only the costs that h needs for justifying its estimates
and saves the remaining costs for subsequent heuristics. Dis-
tributing the operator costs among the component heuristics
in this way makes the sum of the individual heuristic values
admissible.

The quality of the resulting saturated cost partitioning
heuristic strongly depends on the order in which the com-
ponent heuristics are considered (Seipp, Keller, and Helmert
2017). Additionally, we can obtain much stronger heuris-
tics by maximizing over multiple saturated cost partition-
ing heuristics computed for different orders instead of using
a single saturated cost partitioning heuristic (Seipp, Keller,
and Helmert 2017). We therefore iteratively sample a state
(using the sampling algorithm by Haslum et al. 2007), use
a greedy algorithm for finding an initial order for the state
(more concretely, we use the static greedy ordering algo-
rithm with the q h

stolen
scoring function) and afterwards op-

timize the order with simple hill climbing in the space of
orders for at most two seconds (Seipp 2018). If the the sat-
urated cost partitioning heuristic computed for the resulting
optimized greedy order yields a higher estimate for one of a
set of 1000 sample states than all previously added orders,
we add the order to our set of orders. We limit the time for
finding orders in this way to 200 seconds.

Operator Pruning Techniques
We employ two operator pruning techniques:

• strong stubborn sets:
We use the variant that instantiates strong stubborn sets
for classical planning in a straight-forward way (Alk-
hazraji et al. 2012; Wehrle and Helmert 2014). We com-
pute the interference relation “on demand” during the
search and switch off pruning completely in case the frac-
tion of pruned successor states is less than 20% of the total
successor states after 1000 expansions.
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Agricola (20) 0 4 1 1 0 4 1
Data-Network (20) 14 12 12 14 14 12 14
Organic-Synthesis (20) 7 7 7 7 7 7 7
Organic-Synthesis-Split (20) 13 13 12 13 13 13 13
Petri-Net-Alignment (20) 3 0 7 0 5 0 0
Snake (20) 11 13 13 13 13 13 13
Spider (20) 13 15 15 15 15 15 15
Termes (20) 12 13 12 14 12 14 14
Sum (160) 73 77 79 77 79 78 77

Table 1: Coverage scores of saturated cost partitioning over
different heuristic subsets for IPC 2018 tasks that have no
conditional effects after the translation phase.

• h2 mutexes (Alcázar and Torralba 2015):
This operator pruning method can remove irrelevant op-
erators. We invoke it after translating a given input task to
SAS+ and before starting the search component of Fast
Downward.

Post-IPC Evaluation
After the IPC 2018, we ran an experiment to analyze how
much value each of the three sets of heuristics (CART, HC
and SYS) contributes to the overall heuristic on the IPC 2018
benchmarks that have no conditional effects after the transla-
tion phase. We used a time and memory limit of 30 minutes
and 7 GiB. Table 1 shows coverage results.

The seven different combinations of heuristics lead to
similar total coverage scores (73–79 tasks). Using Carte-
sian heuristics (CART) leads to solving the lowest num-
ber of tasks, whereas using systematic PDBs by them-
selves (SYS) or combined with Cartesian abstractions
(SYS+CART) achieves the maximal total coverage score.
While coverage never decreases when adding systematic
PDBs to the set of heuristics, it varies between domains
whether the other types of heuristics are beneficial.

For the tasks in the Agricola domain, hill climbing PDBs
(HC) are more informative (4 solved tasks) than other
heuristics (0 or 1 solved task). Adding Cartesian abstractions
to the hill climbing PDBs leads to worse heuristics. In prin-
ciple, Scorpion should be able to produce better estimates
given more heuristics, but having a larger set of heuristics
can make finding a good order for saturated cost partition-
ing harder.

In the Data-Network domain it is beneficial to use Carte-
sian abstractions (14 solved tasks vs. 12 solved tasks without
Cartesian abstractions), whereas all heuristic subsets solve
almost the same number of tasks in both variants of Organic-
Synthesis.

When using hill climbing PDB heuristics, Scorpion is un-

able to solve any Petri-Net-Alignment tasks within the given
limits. This is the case since the hill climbing algorithm
starts by computing a PDB for each goal variable and then
calculates the maximal additive subsets of these PDBs. The
latter step runs out of memory for all tasks from the Petri-
Net-Alignment domain, because of the large number of goal
facts.2

The Snake and Spider domains benefit from using PDB
heuristics. With systematic or hill climbing PDBs Scorpion
solves 13 and 15 tasks, in these two domains. Using only
Cartesian abstractions leads to solving two fewer tasks in
each of the two domains.

In the Termes domain hill climbing PDBs with at least
one other type of heuristic solves 14 tasks, whereas the other
configurations solve 12 or 13 tasks.
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Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-
ning. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilber-
stein, S., eds., Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS
2015), 2–6. AAAI Press.
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert, M.
2012. A stubborn set algorithm for optimal planning. In De
Raedt, L.; Bessiere, C.; Dubois, D.; Doherty, P.; Frasconi, P.;
Heintz, F.; and Lucas, P., eds., Proceedings of the 20th Eu-
ropean Conference on Artificial Intelligence (ECAI 2012),
891–892. IOS Press.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
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Fast Downward Stone Soup (Helmert, Röger, and Karpas
2011) is a portfolio planner, based on the Fast Downward
planning system (Helmert 2006; 2009). It already partici-
pated in the International Planning Competitions (IPC) 2011
and 2014.

In this planner abstract, we present the Fast Downward
Stone Soup portfolio that we submitted to the sequential sat-
isficing and bounded-cost tracks of IPC 2018. It uses differ-
ent component algorithms than the 2011 and 2014 variants
but employs the same procedure for building the portfolio.
Therefore, we only briefly recapitulate the procedure and re-
fer the reader to the original Fast Downward Stone Soup
paper for a more detailed discussion (Helmert, Röger, and
Karpas 2011).

Building the Portfolio
The Stone Soup algorithm requires the following informa-
tion as input:

• A set of planning algorithms A. We use a set of 144 Fast
Downward configurations, which we describe below.

• A set of training instances I, for which portfolio perfor-
mance is optimized. We use a set of 2115 instances, de-
scribed below.

• Complete evaluation results that include, for each algo-
rithm A ∈ A and training instance I ∈ I,

– the runtime t(A, I) of the given algorithm on the given
training instance on our evaluation machines, in sec-
onds (we did not consider anytime planners), and

– the plan cost c(A, I) of the plan that was found.

We use time and memory limits of 30 minutes and 3.5 GiB
to generate this data. If algorithm A fails to solve instance
I within these bounds, we set t(A, I) = c(A, I) =∞.

The procedure computes a portfolio as a mapping P :
A → N0 which assigns a time limit (possibly 0 if the al-
gorithm is not used) to each component algorithm. It is a
simple hill-climbing search in the space of portfolios, shown
in Figure 1.

In addition to the algorithms and the evaluation results,
the algorithm takes two parameters, granularity and timeout,
both measured in seconds. The timeout is an upper bound on
the total time for the generated portfolio, which is the sum of

build-portfolio(algorithms, results, granularity, timeout):
portfolio := {A 7→ 0 | A ∈ algorithms}
repeat btimeout/granularityc times:

candidates := successors(portfolio, granularity)
portfolio := argmaxC∈candidates score(C, results)

portfolio := reduce(portfolio, results)
return portfolio

Figure 1: Stone Soup algorithm for building a portfolio.

all component time limits. The granularity specifies the step
size with which we add time slices to the current portfolio.

The search starts from a portfolio that assigns a time limit
of 0 seconds to all algorithms. In each hill-climbing step,
it generates all possible successors of the current portfolio.
There is one successor per algorithm A, where the only dif-
ference between the current portfolio and the successor is
that the time limit of A is increased by the given granularity.

We evaluate the quality of a portfolio P by computing
its portfolio score s(P ). The portfolio score is the sum of
instance scores s(P, I) over all instances I ∈ I. The func-
tion s(P, I) is similar to the scoring function used for the
International Planning Competitions since 2008. The only
difference is that we use the best solution quality among our
algorithms as reference quality (instead of taking solutions
from other planners into account): if no algorithm in a port-
folio P solves an instance I within its allotted runtime, we
set s(P, I) = 0. Otherwise, s(P, I) = c∗I/c

P
I , where c∗I is

the lowest solution cost for I of any input algorithm A ∈ A
and cPI denotes the best solution cost among all algorithms
A ∈ A that solve the instance within their allotted runtime
P (A).

In each hill-climbing step the search chooses the succes-
sor with the highest portfolio score. Ties are broken in favor
of successors that increase the timeout of the component al-
gorithm that occurs earliest in some arbitrary total order.

The hill-climbing phase ends when all successors would
exceed the given time bound. A post-processing step reduces
the time assigned to each algorithm by the portfolio. It con-
siders the algorithms in the same arbitrary order used for
breaking ties in the hill-climbing phase and sets their time
limit to the lowest value that would still lead to the same
portfolio score.
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Training Benchmark Set
Our set of training instances consists of almost all tasks
from the satisficing tracks of IPC 1998–2014 plus tasks from
various other sources: compilations of conformant planning
tasks (Palacios and Geffner 2009), finite-state controller
synthesis problems (Bonet, Palacios, and Geffner 2009),
genome edit distance problems (Haslum 2011), alarm pro-
cessing tasks for power networks (Haslum and Grastien
2011), and Briefcaseworld tasks from the FF/IPP domain
collection.1 In total, we use 2115 training instances.

Planning Algorithms
We collect our input planning algorithms from several
sources. First, we use the component algorithms of the fol-
lowing portfolios that participated in the sequential satisfic-
ing track of IPC 2014:

• Fast Downward Cedalion (Seipp, Sievers, and Hutter
2014; Seipp et al. 2015): 18 algorithms2

• Fast Downward Stone Soup 2014 (Röger, Pommerening,
and Seipp 2014): 27 algorithms3

• Fast Downward Uniform (Seipp, Braun, and Garimort
2014): 21 algorithms

Second, for each of the 66 algorithms A above, we add
another version A′ which only differs from A in that A′ uses
an additional type-based open list (Xie et al. 2014) with the
type (g), i.e., the distance to the initial state. Both A and A′

alternate between their open lists (Röger and Helmert 2010).
Third, we add 12 different variants of the configuration

used in the first iteration of LAMA 2011 (Richter, Westphal,
and Helmert 2011). We vary the following parameters:

• preferred successors first ∈ {true, false}:
Consider states reached via preferred operators first?

• randomize successors ∈ {true, false}:
Randomize the order in which successors are generated?4

• additional type-based open list ∈ {none, (g), (hFF, g)}:
Alternate between only the original open lists used by
the first iteration of LAMA 2011 or include an additional
type-based open list (Xie et al. 2014) with the type (g) or
(hFF, g)?

In total, this leaves us with (18+ 27+21) · 2+12 = 144
planner configurations as input of the hill-climbing proce-
dure. For the timeout parameter we use 1800 seconds, the
time limit used for IPC 2018. We tried different values for
the granularity parameter and achieved the best results (com-
puted for the training set) with a granularity of 30 seconds.

1http://fai.cs.uni-saarland.de/hoffmann/
ff-domains.html

2The only change we make to the algorithms is disabling the
YAHSP lookahead (Vidal 2004).

3We ignore the anytime algorithm which is run after a solution
has been found.

4When randomizing successors and considering preferred suc-
cessors first, randomization happens before preferred successors
are moved to the front.

Resulting Portfolio
The resulting portfolio uses 41 of the 144 possible al-
gorithms, running them between 8 and 135 seconds. On
the training set, the portfolio achieves an overall score of
1999.93, which is much better than the best component al-
gorithm with a score of 1650.40. If we had an oracle to select
the best algorithm (getting allotted the full 1800 seconds) for
each instance, we could reach a total score of 2073.

Executing The Sequential Portfolio
In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequential
order unspecified. With the simplifying assumption that all
planner runs use the full assigned time and do not commu-
nicate information, the order is indeed irrelevant. In reality
the situation is more complex.

First, the Fast Downward planner uses a preprocessing
phase that we need to run once before we start the port-
folio, so we do not have the full 1800 seconds available.5
Therefore, we treat per-algorithm time limits defined by the
portfolio as relative, rather than absolute values: whenever
we start an algorithm, we compute the total allotted time of
this and all following algorithms and scale it to the actually
remaining computation time. We then assign the respective
scaled time to the run. As a result, the last algorithm is al-
lowed to use all of the remaining time.

Second, in the satisficing setting we would like to use the
cost of a plan found by one algorithm to prune the search
of subsequent planner runs (in the bounded-cost setting we
stop after finding the first plan that is at most as expensive as
the given bound). We therefore use the best solution found
so far for pruning based on g values: only paths in the state
space that are cheaper than the best solution found so far are
pursued.

Third, planner runs often terminate early, e.g., because
they run out of memory or find a plan. Since we would like
to use the remaining time to continue the search for a plan or
improve the solution quality, we sort the algorithms by their
coverage scores in decreasing order, hence beginning with
algorithms likely to succeed quickly.
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Abstract

Metis 2018 is a Fast Downward based planner that uses
the pruning techniques partial order reduction and structural
symmetries. The two variants that participate in the compe-
tition use the LM-cut and and the landmark heuristic. The
former essentially is a remake of Metis that participated in
the IPC 2014, and the latter only differs in the used heuristic
and the symmetry-based pruning algorithm.

Metis 2018
Metis is a planner that participated in the IPC 2014 (Alk-
hazraji et al. 2014), called Metis 2014 henceforth. Our plan-
ner, Metis 2018, is a remake of Metis 2014, and comes with
similar three core components:

• an admissible heuristic: LM-cut (Helmert and Domshlak
2009) or the max heuristic over LM-cut and the landmark
heuristic with the landmark generation method of LAMA
(Richter, Helmert, and Westphal 2008) and hmlandmarks
with m = 2 (Keyder, Richter, and Helmert 2010),

• pruning based on structural symmetries (Shleyfman et al.
2015) using DKS (Domshlak, Katz, and Shleyfman 2012)
or orbit space search (OSS) (Domshlak, Katz, and Shleyf-
man 2015), and

• pruning based on partial order reduction using strong
stubborn sets (Wehrle and Helmert 2014).

Notable differences to Metis 2014 are that we do not use
the incremental computation of the LM-cut heuristic (Pom-
merening and Helmert 2013) and that we include the land-
mark heuristic for one of our planner variants. Furthermore,
we do not only use OSS, but also the DKS algorithm for
symmetry-based pruning in one of the variants. The partial
order reduction component is the same as in Metis 2014.

In addition to the above differences in ingredients of the
planner, Metis 2018 is implemented on top of a recent ver-
sion of Fast Downward (Helmert 2006). To support con-
ditional effects, we implemented a variant of the LM-cut
heuristic that considers effect conditions in the same way
as Metis 2014 does. However, we refrain from choosing the
regular LM-cut heuristic or variant that supports conditional
effects depending on the requirements of the input planning
task, and instead always use the latter implementation that

comes with a small overhead due to the need for different
data structures.

The implementation of symmetry-based pruning is the
same in both versions, including the extension of the sym-
metry graph to support conditional effects, which was re-
cently also defined formally by Sievers et al. (2017) in the
context of structural symmetries of lifted representations.

Metis 2018 uses the implementation of strong stubborn
sets available in Fast Downward, which is based on the orig-
inal implementation of Alkhazraji et al. (2012) and Wehrle
and Helmert (2012) that has also been used in Metis 2014.
However, the current implementation has been improved in
terms of efficiency since its original development.1 To sup-
port conditional effects, we extended the implementation in
the same way as in Metis 2014. We also use the same mech-
anism that disables pruning after the first 1000 expansions if
only 1% or fewer states have been pruned at this point.

To conclude this abstract, we describe the variants of
our planner submissions to the IPC 2018. Both use a post-
processing step to transform the SAS+ representation ob-
tained through the translator of Fast Downward (Helmert
2009) by using the implementation of h2 mutexes by
Alcázar and Torralba (2015). Furthermore, both use A∗

search (Hart, Nilsson, and Raphael 1968) with an admissible
heuristic and with the same configuration of strong stubborn
sets described above for pruning. Regarding the other com-
ponents, the two variants have the following differences:
• Metis 2018 version 1 essentially is a remake of Metis

2014 and uses OSS for symmetry-based pruning and the
LM-cut heuristic.

• Metis 2018 version 2 uses DKS for symmetry-based prun-
ing and the maximum heuristic over the LM-cut heuristic
and the landmark heuristic, with the two landmark gener-
ation methods described above.
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Abstract

Fast Downward Merge-and-Shrink uses the optimized, ef-
ficient implementation of the merge-and-shrink framework
available in the Fast Downward planning system. We describe
the techniques used in this implementation. To further push
the performance of single-heuristic merge-and-shrink plan-
ners, we additionally discuss and evaluate partial merge-and-
shrink abstractions, which we obtain through imposing a sim-
ple time limit to the merge-and-shrink computation.

Classical Planning
In this planner abstract, we discuss most of the concepts in-
formally. We consider planning tasks in the SAS+ represen-
tation (Bäckström and Nebel 1995), which are defined over
a finite set of finite-domain variables. States are assignments
over these variables. The planning task comes with a set of
operators that have preconditions, effects, and a cost, and
which allow to transform a state which satisfies the precon-
dition into another state that satisfies the effect and remains
unchanged otherwise. The task also specifies an initial state
and a goal condition. The semantics of a planning task can
naturally be described in terms of the labeled transition sys-
tem it induces.

A labeled transition system, or transition system for short,
has a set of states, a set of labels with associated costs, a tran-
sition relation that specifies the transitions which are triples
of predecessor state, label, and successor state, an initial
state from the set of states, and a set of goal states which
is a subset of the set of states. Paths are sequences of labels
that lead from a given state to some goal state. Their cost is
the sum of the label costs of the sequence.

The transition system induced by a planning task consists
of the states of the planning task and has transitions induced
by the operators of the task, respecting the applicability of
operators. Planning is the task of finding a path from the ini-
tial state to some goal state, called a plan. Optimal planning,
which we are concerned with, deals with finding plans of
minimal cost or proving that no plan exists.

Merge-and-Shrink
Merge-and-shrink (Dräger, Finkbeiner, and Podelski 2009;
Helmert et al. 2014) is an algorithm framework to com-
pute abstractions of transition systems. While it has very

successfully been used to compute heuristics for planning
tasks (e.g., Sievers, Wehrle, and Helmert 2014; Fan, Müller,
and Holte 2014; Sievers et al. 2015; Sievers, Wehrle, and
Helmert 2016; Fan, Müller, and Holte 2017; Fan, Holte, and
Müller 2018), it can in principle be used for any problem that
can be represented as a state space which exhibits a factored
representation. Using such compact factored representations
of both transition systems and abstraction mappings is a key
aspect of merge-and-shrink that allows computing arbitrary
abstractions of transition systems of interest which are gen-
erally too large to be explicitly represented.

Factored transition systems are tuples of labeled transi-
tion systems, also called factors, with the same label set
that serve as a compact representation of their synchronized
product. The synchronized product is the transition system
consisting of the Cartesian product of states, where labels
are used to synchronize the factors of the factored transition
system via the labeled transitions: there is a transition be-
tween two states in the product system iff all factors have
a transition between the corresponding component states la-
beled with the same label. A state is an initial/goal state in
the product if all its components are initial/goal states in the
respective factors.

To represent state mappings, merge-and-shrink uses fac-
tored mappings (Sievers 2017), which have previously also
been called cascading tables (Helmert et al. 2014; Tor-
ralba 2015) and merge-and-shrink representations (Helmert,
Röger, and Sievers 2015). Factored mappings are tree-like
data structures where each leaf node is associated with a
variable and a table that maps values of the variable to some
values, and each inner node has two children factored map-
pings and a table that maps pairs of values computed by
the children to some values. Factored mappings represent
a function defined on assignments over the associated vari-
ables of all leaf nodes to some value set. To represent state
mappings between factored transition systems, merge-and-
shrink uses a tuple of factored mappings, called F2F map-
ping, that each correspond to one factor of the target fac-
tored transition system, i.e., each factored mapping com-
putes the state mapping from states of the source factored
transition system to the corresponding factor of the target
factored transition system.

With the addition of generalized label reduction (Sievers,
Wehrle, and Helmert 2014), the merge-and-shrink algorithm

85



can be understood as a framework that repeatedly applies
transformations of a factored transition system, which es-
sentially need to specify the transformed factored transition
system and the F2F mapping that maps from the given fac-
tored transition system to the transformed one. In the con-
text of planning, the algorithm first computes the induced
factored transition system of the given task that consists of
atomic factors which each represent a single variable of the
task. It further initializes the F2F mapping to the identity
mapping of the factored transition system.

In the main loop, the algorithm then repeatedly selects
a transformation of the current factored transition system,
choosing from the four available types of merge-and-shrink
transformations: merge transformations replace two factors
by their synchronized product, shrink transformations apply
an abstraction to a single factor, prune transformations dis-
card unreachable or irrelevant states, i.e., states from which
no goal state can be reached, of a single factor, and label re-
ductions map the common label set of the factored transition
system to a smaller one. Applying the selected transforma-
tion means to replace the previous factored transition system
by the transformed one, and to compose the previous F2F
mapping with the one of the transformation. The main loop
terminates if the maintained factored transition system only
contains a single factor. Together with the factored mapping,
this factor induces the merge-and-shrink heuristic.

Concrete instantiations of the algorithm framework need
to decide on a general strategy that decides on which type of
transformation to apply in each iteration of the main loop,
and it needs to provide transformation strategies that spec-
ify how to compute the individual transformations. For ex-
ample, shrink strategies compute a state equivalence relation
for a given transition system, reducing the size of the transi-
tion system below a given limit, and merge strategies decide
which two factors to replace by their synchronized product.

Since our efficient implementation of the merge-and-
shrink relies on label equivalence relations, we briefly dis-
cuss this concept in the context of label reductions. Sievers,
Wehrle, and Helmert (2014) showed that label reductions are
exact, i.e., preserve the perfect heuristic, if they only com-
bine labels of the same cost that are Θ-combinable for some
factor Θ of a given factored transition system F . Labels are
Θ-combinable if they are locally equivalent in all factors
Θ′ 6= Θ of F , i.e., if they label exactly the same transitions
in all other factors than Θ.

For more details and a formal presentation of the trans-
formation framework and the merge-and-shrink transforma-
tions, we refer to the work by Sievers (2017).

Implementation
In this section, we briefly mention some of the techniques
used in the efficient implementation of the merge-and-shrink
framework in Fast Downward (Helmert 2006). More details
can be found in the work by Sievers (2017).

To represent transition systems, we do not store transi-
tions as an adjacency list as it is commonly done to repre-
sent graphs, but rather store all transitions grouped by labels.
This allows an efficient application of all merge-and-shrink
transformations, as we will see below. Furthermore, we store

label groups of locally equivalent labels for each factor, dis-
regarding their cost (the cost of a label group is the mini-
mum cost of any participating label). This allows storing the
transitions of locally equivalent labels once rather than sep-
arately for each label.

Depending on the chosen transformation strategies, we
need to compute g- and h-values of individual factors al-
ready during the merge-and-shrink computation. (Of course,
we need to compute h-values in the end to compute the
heuristic.) These are computed using Dijkstra’s algorithm
(Dijkstra 1959). This is the only place where we need an
explicit adjacency list representation of transition systems.

We now turn our attention to the different merge-and-
shrink transformations. When applying a shrink transforma-
tion, the shrink strategy computes a state equivalence rela-
tion for the given factor. We first compute the explicit state
mapping from this equivalence relation, assigning a consec-
utive number to each equivalence class to allow a compact
representation. Then we use this state mapping for an in-
place modification of the factor by going over all transitions
and updating their source and target states (compared to an
adjacency list, this avoids the need to move transitions of
different states), and for an in-place modification of the cor-
responding factored mapping by applying the state mapping
to its table. From the equivalence relation on states, we get
the set of new goal states.

When applying a merge transformation to the factored
transition system, merging two transition systems Θ1 and
Θ2, we do not compute the full product of states and their
transitions because this would require to compute the local
equivalence relation on labels from scratch after comput-
ing the product. Instead, we use a more efficient, bucket-
based approach to directly compute the refinement of the lo-
cal equivalence relations on labels of Θ1 and Θ2, collecting
their transitions accordingly. Computing the factored map-
ping that maps states to the product factor is straightforward
and merely a composition of the two component factored
mappings.

When applying a prune transformation, we first deter-
mine the set of to-be-pruned states using g- and/or h-values.
We prune them by entirely removing them and their transi-
tions from the factor. The table of the corresponding factored
mapping is updated to map removed states to a special sym-
bol which is evaluated to∞ by the heuristic.

For an efficient computation of exact label reductions
based on Θ-combinability, we need to be able to efficiently
refine the local equivalence relations of all (but one) fac-
tors of a factored transition system. This is possible using
linked lists, which we therefore use to store label equiva-
lence classes, i.e., label groups, for each factor. Applying
the label reduction, i.e., the label mapping, is simple for all
factors Θ′ 6= Θ for which we know that the reduced labels
are locally equivalent: all we need to do is to relabel the set
of transitions of the reduced labels, remove the labels from
their group and add the new label to it. For the factor Θ, we
need to collect all transitions of all reduced labels and com-
bine them to form the transitions of the new label. We update
the local equivalence on labels by removing reduced labels
from their (different) groups and the groups themselves if
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they become empty, and by adding a new singleton group
for the new label.

Partial Merge-and-Shrink Abstractions
To the best of our knowledge, the literature on merge-
and-shrink so far always considered computing merge-and-
shrink abstractions over all variables of a given planning
task. That is, the main loop of the algorithm is stopped only
if the factored transition system contains a single factor.
However, there is no conceptual or technical reason to not
stop the algorithm early, ending up with several factors and
factored mappings that represent so-called partial abstrac-
tions because they do not cover all variables of the given
planning task. The set of partial abstractions in turn induces
a set of factor heuristics in the same way as usually the sin-
gle factor and factored mapping does.

Additionally, we observed that state-of-the-art merge-
and-shrink planners fail to finish computing the abstraction
in the given time and memory limits in a non-negligible
number of cases (152–272 out of 1667 tasks for state-of-the-
art-configurations1). As a simple stop-gap measure for this
phenomenon, we suggest adding a time limit to the merge-
and-shrink algorithm, allowing to terminate the computation
even before having computed all atomic factors. As a conse-
quence, we obtain a set of partial merge-and-shrink heuris-
tics as described above whenever the time limit stops the
merge-and-shrink computation early.

Whenever this happens, we face the decision of comput-
ing a heuristic from the set of factor heuristics induced by
the remaining factors and factored mappings. A straight-
forward way is to compute the max-factor heuristic (hmf)
that maximizes over all factor heuristics. The second, pre-
sumably less expensive alternative is to choose a single fac-
tor heuristic (hsg) and use it as the merge-and-shrink heuris-
tic. We use the following simple rule of thumb in the latter
case: we prefer the factor heuristic with the largest estimate
for the initial state (rationale: better informed heuristic),
breaking ties in favor of larger factors (rationale: more fine-
grained abstraction), and choose a random heuristic among
all remaining candidates of equal preference.

A recent paper that was published after the IPC describes
and evaluates this technique in more detail (Sievers 2018).

Competition Planner
In the following, we describe the two variants of the plan-
ner submitted to the IPC 2018. To decide how to compute
partial merge-and-shrink abstractions, we also evaluate dif-
ferent choices experimentally. To do so, we ran our plan-
ner on the (optimal) benchmarks of all IPCs up to 2014,
a set comprised of 1667 planning tasks distributed across
57 domains,2 using A∗ search in conjunction with differ-
ent merge-and-shrink heuristics. We limit time to 30 min-
utes and memory to 3.5 GiB per task, using Downward-Lab

1See rows “# constr” of column “base” of Table 1.
2From the collection at https://bitbucket.org/

aibasel/downward-benchmarks, we use the “optimal
strips” benchmark suite.

hsg hmf

base 450s 900s 1350s 450s 900s 1350s

Coverage 802 835 836 836 836 836 835

FD
M

S2

# constr 1395 1637 1629 1615 1636 1629 1614
Constr time 241.90 135.99 197.57 230.70 135.73 196.58 229.45
Constr oom 21 21 21 21 21 21 21
Constr oot 251 9 17 31 10 17 32
E 75th perc 1342k 1368k 1342k 1342k 1368k 1342k 1342k

Coverage 814 844 844 842 844 844 841

FD
M

S1

# constr 1505 1622 1620 1611 1622 1621 1611
Constr time 97.93 61.62 80.59 91.17 61.29 79.82 89.84
Constr oom 21 21 21 21 21 21 21
Constr oot 141 24 26 35 24 25 35
E 75th perc 1860k 1860k 1860k 1860k 1860k 1860k 1860k

Table 1: Comparison of the baseline against two versions of
partial merge-and-shrink, using different time limits.

(Seipp et al. 2017) for conducting the experiments on a clus-
ter of machines with Intel Xeon Silver 4114 CPUs running
at 2.2 GHz.

Both variants of our planner, FDMS1 and FDMS2, use
the state-of-the-art shrink strategy based on bisimulation
(Nissim, Hoffmann, and Helmert 2011) with a size limit
of 50000, always allowing (perfect) shrinking. We use full
pruning, i.e., we always prune both unreachable and irrel-
evant states, and we perform exact label reductions based
on Θ-combinability with a fixed point algorithm using a
random order on factors. FDMS1 uses the state-of-the-art
merge strategy based on strongly connected components
of the causal graph (Sievers, Wehrle, and Helmert 2016),
which uses DFP (Sievers, Wehrle, and Helmert 2014) for
internal merging (SCCdfp). FDMS2 uses the merge strat-
egy score-based MIASM (sbMIASM, previously also called
DYN-MIASM), which is a simple variant of the entirely pre-
computed merge strategy maximum intermediate abstrac-
tion size minimizing (Fan, Müller, and Holte 2014).

Table 1 shows the number of solved tasks (coverage), the
number of tasks for which the heuristic construction com-
pleted (# constr), the runtime of the heuristic construction
(constr time), the number of failures of the heuristic con-
struction due to running out of time (constr oot) or memory
(constr oom), and the number of expansions until the last f -
layer. The table compares the baseline (base) with the two
variants of computing a single merge-and-shrink heuristic
(hsg and hmf) using time limits of 450s, 900s, and 1350s.

As expected, adding a time limit is a very effective mea-
sure for greatly increasing the number of successful heuristic
constructions, which also directly transfers to a significant
increase in coverage of all configurations, with 900s being
a sweet spot for both planners. Stopping the computation
early does not affect the heuristic quality as one might have
expected. The likely reason is that with limiting the time, we
catch precisely those tasks for which the construction other-
wise does not terminate or terminate too late for a successful
search. Tasks which we can already solve without imposing
a time limit (base) usually require a rather short construction
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Compl. FDMS PP Scor

1 2 1 2

Sum previous IPCs (1667) 1026 1056 939 936 1065 1150

Sum IPC 2018 (200) 125 125 101 104 123 108

Sum (1867) 1151 1181 1040 1040 1188 1258

Table 2: Overall coverage of the top IPC 2018 planners on all
IPC domains, split in the set prior to IPC 2018 and the set
used in IPC 2018. Compl: Complementary, PP: Planning-
PDBs, Scor: Scorpion.

time, and therefore limiting the time to 900s or more does
not stop the heuristic computation early and hence does not
reduce heuristic quality in these cases.

We also observe that there is no significant difference be-
tween hmf and hsg. While hmf theoretically dominates any
single factor heuristic by definition, evaluating the former
can be slightly more expensive. Furthermore, in scenarios
where at the end, there is one (large) factor that covers many
variables and many smaller factors that cover few variables
(e.g., atomic factors), the large one likely dominates the oth-
ers, and thus hsg is equally informed as hmf.

For the competition, we decided to use a time limit of 900s
and to compute hmf in both planner variants FDMS1 and
FDMS2. In addition to pure A∗ search with the described
merge-and-shrink heuristics, they use pruning based on par-
tial order reduction by using strong stubborn sets (Alkhazraji
et al. 2012; Wehrle and Helmert 2014). We extended the im-
plementation in Fast Downward with support for conditional
effects and with a mechanism that disables pruning if, after
the first 1000 expansions, only 1% or fewer states have been
pruned. Both planners further use pruning based on struc-
tural symmetries (Shleyfman et al. 2015) by using the DKS
algorithm (Domshlak, Katz, and Shleyfman 2012). Finally,
after translating PDDL with the translator of Fast Downward
(Helmert 2009), we also post-process the resulting SAS+

representation using the implementation of h2 mutexes by
Alcázar and Torralba (2015).

Post-IPC Discussion
Our merge-and-shrink planners finished seventh and eighth
out of 16 entries. The winning planner, Delfi 1, and the sixth
placed Delfi 2, both are portfolios that contain both merge-
and-shrink planners of this submission. Furthermore, the
post-IPC analysis of Delfi shows that FDMS2 is necessary
to be included to achieve oracle performance over all com-
ponent planners (Katz et al. 2018). Leaving these portfolios
aside, the other entries above FDMS are three PDB-based
planners (Complementary1 by Franco et al., 2018, Comple-
mentary2 by Franco, Lelis, and Barley, 2018, and Planning-
PDBs by Martinez et al., 2018) and a planner based on
Cartesian abstractions and PDBs (Scorpion by Seipp, 2018).
For the following analysis, we ran these planners under IPC
conditions.

Table 2 shows coverage of all mentioned planners, aggre-
gating domains of all previous IPCs and domains of IPC

Compl. FDMS PP Scor

1 2 1 2

Previous IPCs (57) 22 27 17 17 28 41

IPC 2018 (10) 2 4 2 3 4 6

Sum ()

Table 3: Overall coverage of the top IPC 2018 planners on all
IPC domains, split in the set prior to IPC 2018 and the set
used in IPC 2018. Compl: Complementary, PP: Planning-
PDBs, Scor: Scorpion.

2018. Tables 4 and 5 show the full domain-wise results. It
is clear that Scorpion was the state of the art planner prior
to the competition, leaving both the three PDB-based and
the two merge-and-shrink-based planners behind by a large
margin. The more notable are the results of the IPC 2018,
where the PDB-based planners are clearly ahead of Scor-
pion, which is very closely followed by our two merge-and-
shrink planners. The main reason is that Scorpion struggles
on AGRICOLA and PETRI-NET-ALIGNMENT, where the for-
mer seems well-suited for merge-and-shrink planners, and
the latter for planners using symbolic heuristics or search
(the baseline planner using symbolic search finishes above
Scorpion).

Furthermore, while absolute coverage is certainly a use-
ful performance indicator, it is problematic for the domains
of older IPCs because they contain a largely varying num-
ber of tasks. In more recent editions of IPCs, domains have
the same number of tasks and hence only comparing total
coverage makes more sense in these cases. For complete-
ness and as an alternative performance indicator, we there-
fore also count the number of domains where each planner
achieves the highest coverage. Table 3 shows that Scorpion
is the winner in that category for both the previous and the
new domains, however the distance to the competitors is less
pointed out for the IPC 2018 domains.
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Sum previous IPCs (1667) 1026 1056 939 936 1065 1150

Table 4: Domain-wise coverage on previous IPC domains.

Compl. FDMS PP Scor

1 2 1 2
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Sum IPC 2018 (200) 125 125 101 104 123 108

Table 5: Domain-wise coverage on the IPC 2018 domains.
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Abstract

SYMPLE is a classical planner which performs bidirectional
symbolic search. Symbolic search has proven to be a useful
approach to optimal classical planning and is usually based on
Binary Decision Diagrams (BDDs). Our approach is based on
an alternative data structure called Edge-valued Multi-valued
Decision Diagrams (EVMDDs), which have some structural
advantages over BDDs.

Introduction
The motivation for SYMPLE originates from two related
sources. First, the observation that symbolic planning is a
useful and powerful approach to optimal planning. Sym-
bolic planners are similar to their explicit counterparts, but
operate on entire sets of states instead of single states. Usu-
ally, decision diagrams are used as underlying symbolic
data structure. The most popular decision diagrams are
Binary Decision Diagrams (BDDs) (Bryant 1986) in sym-
bolic search (Kissmann, Edelkamp, and Hoffmann 2014;
Torralba et al. 2014). Second, that an alternative symbolic
data structure, the so-called Edge-Multi-Valued Decision
Diagrams (EVMDDs) (Lai, Pedram, and Vrudhula 1996;
Ciardo and Siminiceanu 2002), were successfully used in
planning with state-dependent action costs (Geißer, Keller,
and Mattmüller 2015; 2016; Mattmüller et al. 2018). In
BDD-based symbolic planning, each BDD represents a set
of states. Multiple BDDs are required to encode at what cost
the states are reachable. In contrast, EVMDDs can be used
as underlying data structure to encode the costs of states in
the same diagram which also encodes the reachability of
states. Regarding planning tasks with diverse action costs,
BDD-based approaches have to bucket over different costs
(e.g. g-values), while our EVMDDs-based approach main-
tains a single decision diagram and can therefore be more
compact.

SYMPLE and the underlying concept was original pre-
sented in Speck, Geißer, and Mattmüller (2018). The fo-
cus of our previous work was on the theory of EVMDD-
based symbolic search for (optimal) planning. Represen-
tations of state sets, transition relations and new EVMDD
operations required for EVMDD-A? were presented. While
an empirical evaluation showed that BDD-A? is superior in
many tasks with unit-costs, EVMDD-A? outperforms other

approaches in domains with state-dependent costs. Unfor-
tunately, the IPC 2018 has no track with state-dependent
action costs, yet. Nevertheless, the compactness of SYM-
PLE can be an advantage over other symbolic approaches
for planning tasks with diverse action costs.

In this paper we will focus on the capabilities and imple-
mentation of SYMPLE, a bidirectional symbolic search plan-
ner based on EVMDDs. We give a short description of how
SYMPLE represents states, costs and actions. EVMDD-A?

is described, which is used for the actual search. In addition,
the implementation of our planner is presented in detail. Fi-
nally, the differences between SYMPLE-1 and SYMPLE-2
are presented, which includes a new method of automated
reformulating of planning tasks to simplify grounding.

Planning with EVMDDs
In this chapter we briefly describe how symbolic planning
with EVMDDs can be realized.

EVMDD. A possible representations for functions of the
form f : S → Q ∪ {∞} are Edge-Valued Multi-Valued
Decision Diagrams (EVMDDs), where S denotes the set of
factored states of a given planning task. An EVMDD is a
rooted directed acyclic graph with a dangling incoming edge
to the root node. Internal nodes correspond to variables v,
and each node has |Dv| successors with an assigned weight
to the edge, where Dv is the finite domain of variable v. A
function can be evaluated by traversing the graph according
to the variable assignment and simultaneously adding up the
edge weights. The resulting sum is finally the function value
for the corresponding variable assignment. An example is
shown in Figure 1 where edge labels are written next to the
edges and edge weights are written in boxes on the edges.

Symbolic Structures. Symbolic search operates on sets of
states by performing operations. Here, states are represented
as functions that map each state to the associated cost with
which the state can be reached. Note, that a state s which
is mapped to ∞ has infinity cost and thus is not reachable.
For example, consider Figure 1. The EVMDD E represents
the set of states S = {s|s(x) = 1}, since all other states
are mapped to∞. At the same time, the EVMDD encodes
the cost of these states: s1 = {x .

= 1, y
.
= 0} has a cost
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Figure 1: Left: An EVMDD E which represents a set of
states and their costs. Right: The function represented by E .

of 3 while s2 = {x .
= 1, y

.
= 1} has a cost of 8. Simi-

larly, actions can be represented as so called transition re-
lations. Such transition relations are used to generate suc-
cessor states and their costs which corresponds to applying
actions in explicit planning. For more details we refer to
(Speck, Geißer, and Mattmüller 2018).

EVMDD-A?. Once states and actions, both associated
with costs, are represented as EVMDDs it is possible to start
the actual search. Similar to explicit search, the main idea is
to represent all promising states which might lead to the goal
in an open list. The open list is a single EVMDD encoding
the g-values (reachability costs) of each state. In each iter-
ation, states with the smallest g-value are expanded. More
specifically, all applicable actions represented as transition
relations are applied to these states, resulting in new succes-
sor states. These states are again mapped to their g-value
and added to the open list. As SYMPLE performs bidirec-
tional search, separate open and closed lists for forward and
backward search are maintained. A search step consists ei-
ther of a backward or a forward search step (and modifies
the respective open and closed lists). If a state of the cur-
rent search is expanded and was already contained in the
closed list of the search in the opposite direction, a goal path
is found. Its cost is determined by adding the respective
EVMDDs. If an optimal plan is desired, search has to con-
tinue, until it is proven that there is no cheaper goal path.
Finally, plan reconstruction is executed for both directions
and the returned plans are combined.

Implementation of SYMPLE
This chapter describes the technical aspects of the SYMPLE
planner in detail. Furthermore, we describe the different
configuration for each classical track of the IPC 2018. SYM-
PLE is build on top of the Fast Downward Planning System
(Helmert 2006).

Preprocessing. SYMPLE’s preprocessing is taken from
GAMER (Kissmann, Edelkamp, and Hoffmann 2014) and
SYMBA (Torralba et al. 2014), two former winners of IPCs
(2008 and 2014). This includes the following procedures:

• GAMER’s SAS+ encoding (Kissmann, Edelkamp, and
Hoffmann 2014)

• h2 invariant computation and pruning of spurious actions
(Alcázar and Torralba 2015)

• GAMER’s and SYMBA’s variable ordering (Kissmann and
Edelkamp 2011)

Furthermore, in SYMPLE, we combine as many actions as
possible into a transition relation, until the representation ex-
ceeds 100k nodes. Similarly, invariants are merged together
and represented as EVMDDs in order to prune unreachable
states.

Search. SYMPLE performs a bidirectional variant of
EVMDD-A? (Speck, Geißer, and Mattmüller 2018) using
the blind heuristic. At each iteration either a forward or
backward search step is performed. In order to decide
which direction appears to be more promising, the runtime
of the last forward step is compared to the runtime of the
last backward step. Conditional effects are encoded by ex-
tending the transition relations (Kissmann, Edelkamp, and
Hoffmann 2014). To the authors’ best knowledge, MED-
DLY is currently the only decision diagram library support-
ing EVMDDs. Thus, the underlying library for EVMDD op-
erations is an extended version of MEDDLY-0.14 (Babar and
Miner 2010). The extension consists of operations necessary
to realize symbolic planning (Speck, Geißer, and Mattmüller
2018) and the encoding of infinite costs. In order to save
memory, we uses the “pessimistic” node deletion policy of
MEDDLY, i.e. nodes are removed as soon as they become
disconnected.

Track-Configurations. As SYMPLE was developed for
optimal planning with state-dependent action costs using an
A? variant, the main focus is on optimal planning. Never-
theless, optimal planners can usually be easily modified to
participate at other tracks. SYMPLE participates in four dif-
ferent classical planning tracks at the IPC 2018: the optimal,
the bounded-cost, the satisficing and the agile track. Gener-
ally it would be desirable to use different search techniques
and heuristics tailored to the requirements of each track, but
we have not yet studied these techniques for EVMDDs. In
the following we describe the small changes made to SYM-
PLE to fit the requirements of the individual tracks.

• All Tracks. Bidirectional EVMDD with blind heuristic.

• Optimal planning. Once a plan is found, the search is
continued until a cheaper plan is found or it is proven that
no cheaper plan can exist.

• Bounded-cost planning. A plan found is only returned if
it costs less than the specified bound.

• Satisficing planning. All plans found are returned. The
search continues until an optimal plan has been found or
the time has elapsed.

• Agile planning. As soon as a plan is found, it is returned.
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SYMPLE-1 vs. SYMPLE-2
SYMPLE-2 differs from SYMPLE-1 only in the translation
step. Both versions are based on the Fast Downward Plan-
ning System (Helmert 2006), and thus use the same trans-
lation unit to ground the lifted PDDL representation. By
using expert knowledge, PDDL tasks are often reformu-
lated beforehand, so that it is easy for planners to ground
the planning task. In principle, such reformulations can be
performed by the planner, and the IPC 2018 organizers an-
nounced that they plan to introduce tasks which are difficult
to ground for current planners. SYMPLE-2 tackles the prob-
lem of the generation of duplicate redundant actions. Due
to symmetries, grounded planning tasks may contain several
identical actions that only differ in name, as the order of the
action arguments does not affect precondition and effects.
Detecting these symmetries and fixing the order of the ar-
guments is the core addition of SYMPLE-2, which results in
fewer redundant actions.

To illustrate this, consider a simple planning domain
where the goal is to drive children to their school (Figure
2). The corresponding planning instance consists of four hu-
mans: one bus driver and three children. Without symmetry
detection, grounding action drive-to-school results in
six different actions: for parameter ?h4, the only possible
substitution is the bus driver, as he is the only one with a
license. For parameters ?h1, ?h2 and ?h3 however, all
combinations of the three children are possible, which leads
to 3! = 6 grounded actions. It is easy to see that these actions
are redundant, as they result in the exact same precondition,
effect and cost. Although grounded actions can easily be
checked for equivalence, this still implies that for n action
parameters, an action similar to drive-to-school re-
sults in n! generated actions and O(n!) equivalence checks.
Our approach now reformulates the lifted PDDL action by
introducing an ordering on the objects of symmetric action
arguments. This ordering is only used during action gen-
eration and automatically discarded afterwards. Therefore,
apart from omitted redundant actions, the resulting task is
equivalent to a task where no symmetry detection is per-
formed.

To identify such symmetries, we compute graph automor-
phisms of the induced planning graph of the lifted PDDL
representation similar in spirit to Sievers et al. (2017), and
Pochter, Zohar, and Rosenschein (2011). After symmetries
in the action arguments are detected, we fix the order of these
action arguments by introducing a predicate succ, as shown
in Figure 2. The predicate succ is reflexive, since there may
be actions where several parameters can be substituted by
the same object constant (here: human). Note that the plan-
ning graph is not affected by the reformulation, as only re-
dundant actions are discarded.

Conclusion
SYMPLE is a new planner based on symbolic search, which
is focused on optimal planning with state-dependent action
costs. The main objective was to determine the strengths and
weaknesses of the system in comparison to other state-of-
the-art planning systems. The benchmark set of the optimal

driverchild1 child2 child3

?h1 ?h2 ?h3 ?h4

1 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Domain ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2 ( d e f i n e ( domain bus )
3 ( : t y p e s human l o c a t i o n )
4 ( : c o n s t a n t s bus s c h o o l − l o c a t i o n )
5 ( : p r e d i c a t e s
6 (at ? l − l o c a t i o n ?h − human )
7 ( l i c e n s e ?h − human )
8 ( succ ?h1 ?h2 − human ) )
9

10 ( : a c t i o n dr ive− t o− schoo l
11 :parameters ( ?h1 ?h2 ?h3 ?h4 − human )
12 : p r e c o n d i t i o n ( and ( n o t (= ?h1 ?h2 ) )
13 ( n o t (= ?h1 ?h3 ) ) ( n o t (= ?h1 ?h4 ) )
14 ( n o t (= ?h2 ?h3 ) ) ( n o t (= ?h2 ?h4 ) )
15 ( n o t (= ?h3 ?h4 ) )
16 (at bus ?h1 ) (at bus ?h2 )
17 (at bus ?h3 ) (at bus ?h4 )
18 ( l i c e n s e ?h4 )
19 ( succ ?h1 ?h2 ) ( succ ?h2 ?h3 ) )
20 : e f f e c t ( and (at s c h o o l ?h1 )
21 (at s c h o o l ?h2 ) (at s c h o o l ?h3 )
22 ( n o t (at bus ?h1 ) ) ( n o t (at bus ?h2 ) )
23 ( n o t (at bus ?h3 ) ) ) ) )
24
25 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Problem ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
26 ( d e f i n e ( problem bus−3−1 )
27 ( :domain bus )
28 ( : o b j e c t s
29 d r i v e r c h i l d 1 c h i l d 2 c h i l d 3 − human )
30 ( : i n i t (at bus d r i v e r )
31 (at bus c h i l d 1 )
32 (at bus c h i l d 2 )
33 (at bus c h i l d 3 )
34 ( l i c e n s e d r i v e r )
35 ( succ d r i v e r d r i v e r ) ( succ d r i v e r c h i l d 1 )
36 ( succ d r i v e r c h i l d 2 ) ( succ d r i v e r c h i l d 3 )
37 ( succ c h i l d 1 c h i l d 1 ) ( succ c h i l d 1 c h i l d 2 )
38 ( succ c h i l d 1 c h i l d 3 ) ( succ c h i l d 2 c h i l d 2 )
39 ( succ c h i l d 2 c h i l d 3 ) ( succ c h i l d 3 c h i l d 3 ) )
40 ( : g o a l ( and
41 (at s c h o o l c h i l d 1 )
42 (at s c h o o l c h i l d 2 )
43 (at s c h o o l c h i l d 3 ) ) ) )

Figure 2: A domain and instance description where six re-
dundant action are generated by grounding the task. The
succ predicate is automatically added. The reformulation of
the task contains only one action.
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track of the IPC 2018 consists of five tasks with unit costs
and five task with constant costs.1 In addition, a strong fo-
cus was put on conditional effects, which are supported by
SYMPLE, but not highly optimized. The plan reformulation
used in SYMPLE-2 detected redundant actions in the “Or-
ganic Synthesis” domain (Matloob and Soutchanski 2016).
However, the IPC organizer provided an alternative version
of this domain, which was rewritten by hand and easier to
solve. In summary, SYMPLE performed as expected and was
competitive in some domains of the optimal track. The high
focus on conditional effects and few domains with diverse
action costs did not favor our system.
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the Importance of Computing and Exploiting Invariants in
Planning. In Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS
2015), 2–6. AAAI Press. Palo Alto, CA, USA.
Babar, J., and Miner, A. 2010. MEDDLY: Multi-terminal
and edge-valued decision diagram library. In Proceedings
of the Seventh International Conference on the Quantitative
Evaluation of Systems (QEST 2010), 195–196. IEEE Com-
puter Society. Los Alamitos, CA, USA.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Ciardo, G., and Siminiceanu, R. 2002. Using edge-valued
decision diagrams for symbolic generation of shortest paths.
In Aagaard, M. D., and O’Leary, J. W., eds., Proceedings of
the Fourth International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2002), 256–273. Berlin,
Heidelberg, Germany: Springer.
Geißer, F.; Keller, T.; and Mattmüller, R. 2015. Delete re-
laxations for planning with state-dependent action costs. In
Yang, Q.; Kong, H.; and Wooldridge, M., eds., Proceedings
of the Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence (IJCAI 2015), 1573–1579. AAAI Press.
Palo Alto, CA, USA.
Geißer, F.; Keller, T.; and Mattmüller, R. 2016. Abstractions
for planning with state-dependent action costs. In Coles, A.;
Coles, A.; Edelkamp, S.; Magazzeni, D.; and Sanner, S.,
eds., Proceedings of the Twenty-Sixth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2016),
140–148. AAAI Press. Palo Alto, CA, USA.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.

1There are two domains that have unit costs in their original
form and constant costs in a provided alternative form.

Kissmann, P., and Edelkamp, S. 2011. Improving Cost-
Optimal Domain-Independent Symbolic Planning. In Pro-
ceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence (AAAI 2018). AAAI Press. Menlo Park, CA,
USA.
Kissmann, P.; Edelkamp, S.; and Hoffmann, J. 2014. Gamer
and Dynamic-Gamer: Symbolic search at IPC 2014. In
Eighth International Planning Competition (IPC 2014), 77–
84.
Lai, Y.; Pedram, M.; and Vrudhula, S. B. K. 1996. Formal
verification using edge-valued binary decision diagrams.
IEEE Transactions on Computers 45(2):247–255.
Matloob, R., and Soutchanski, M. 2016. Exploring Or-
ganic Synthesis with State-of-the-Art Planning Techniques.
In Proceedings of the ICAPS Workshop on Scheduling and
Planning Applications Workshop (SPARK), 52–61.
Mattmüller, R.; Geißer, F.; Wright, B.; and Nebel, B. 2018.
On the Relationship Between State-Dependent Action Costs
and Conditional Effects in Planning. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI 2018). AAAI Press. Menlo Park, CA, USA.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Ex-
ploiting problem symmetries in state-based planners. In Bur-
gard, W., and Roth, D., eds., Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence (AAAI 2011),
1004–1009. AAAI Press.
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Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A symbolic bidirectional A*
planner. In Eighth International Planning Competition (IPC
2014), 105–109.

94


