
The Complementary2 Planner in the IPC 2018

Santiago Franco1∗, Levi H. S. Lelis2, Mike Barley3

1 School of Computing and Engineering, University of Huddersfield, UK
2 Departamento de Informática, Universidade Federal de Viçosa, Brazil
3 Computer Science Department, Auckland University, New Zealand

s.franco@hud.ac.uk, levi.lelis@ufv.br, barley@cs.auckland.ac.nz

Abstract

This planner is an implementation of the heuristic (CPC) pre-
sented in (Franco et al. 2017), the only updates are a few
bug fixes. This paper contains a brief summary of that work
with a slant on which exact configuration was used and why.
Please quote (Franco et al. 2017) as well when discussing
this planner.
A pattern database (PDB) for a planning task is a heuristic
function in the form of a lookup table that contains optimal
solution costs of a simplified version of the task. In this plan-
ner we use a method that sequentially creates multiple PDBs
which are later combined into a single heuristic function. At a
given iteration, our method uses estimates of the A∗ running
time to create a PDB that complements the strengths of the
PDBs created in previous iterations. We used symbolic PDBs
because the current implementation supports conditional ef-
fects, a requirement in the IPC18. Additionally, in our bench-
mark tests, this was the best option even without conditional
effects.

Introduction
This paper contains excerpts from (Franco et al. 2017) be-
cause this planner is an exact implementation of the CPC
heuristic, specifically the CPC-S-P configuration. Other
parts of the original paper have been summarized. Com-
ments have been added to reflect the reasoning behind some
of our choices. But first, we will give some context informa-
tion for those not familiar with PDBs.

Excerpt from Original Paper
Pattern databases (PDBs) map the state space of a classical
planning task onto a smaller abstract state space by consid-
ering only a subset of the task’s variables, which is called
a pattern (Culberson and Schaeffer 1998; Edelkamp 2001).
The optimal distance from every abstract state to an ab-
stract goal state is precomputed and stored in a lookup ta-
ble. The values in the table are used as a heuristic function
to guide search algorithms such as A∗ (Hart et al. 1968)
while solving planning tasks. Since a PDB heuristic is

∗This work was carried out while S. Franco was a postdoctoral
fellow at Universidade Federal de Viçosa, Brazil.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

uniquely defined from a pattern, we also use the word pat-
tern to refer to a PDB. The combination of several PDBs
can result in better cost-to-go estimates than the estimates
provided by each PDB alone. One might combine mul-
tiple PDBs by taking the maximum (Holte et al. 2006;
Barley et al. 2014) or the sum (Felner et al. 2004) of the
PDBs’ estimates. In this paper we consider the canonical
heuristic function, which takes the maximum estimate over
all additive PDB subsets (Haslum et al. 2007). The chal-
lenge is then to find a collection of patterns from which an
effective heuristic is derived.

Multiple approaches have been suggested to select good
pattern collections (Haslum et al. 2007; Edelkamp 2006;
Kissmann and Edelkamp 2011). Recent work showed that
using a genetic algorithm (Edelkamp 2006) to generate a
large collection of PDBs and greedily selecting a subset of
them can be effective in practice (Lelis et al. 2016). How-
ever, while generating a PDB heuristic, Lelis et al.’s ap-
proach is blind to the fact that other PDBs will be considered
in the selection process. Our proposed method, which we
call Complementary PDBs Creation (CPC), adjusts its PDB
generation process to account for the PDBs already gener-
ated as well as for other heuristics optionally provided as
input.

CPC sequentially creates a set of pattern collections Psel

for a given planning task ∇. CPC starts with an empty Psel

set and iteratively adds a pattern collection P to Psel if it
predicts that P will be complementary to Psel . We say that
P complements Psel if A∗ using a heuristic built from P
∪Psel solves ∇ quicker than when using a heuristic built
fromPsel . CPC uses estimates of A∗’s running time to guide
a local search in the space of pattern collections. After Psel

has been constructed, all the corresponding PDBs are com-
bined with the canonical heuristic function (Haslum et al.
2007).

IPC2018 Choices
We evaluated our pattern selection scheme in different set-
tings in (Franco et al. 2017) , including explicit and sym-
bolic PDBs. Our results showed that combining symbolic
PDB heuristics were able to outperform existing methods.
Furthermore, it also showed that CPC could create comple-
mentary PDBs to other methods. Our best combination was
using our method to complement a symbolic perimeter PDB.



The selected method to be complemented for this competi-
tion first generates a symbolic PDB up to a time limit of 250
seconds, a memory limit of 4GBs1. One advantage of start-
ing our algorithm with such a perimeter search is that if there
is an easy solution to be found in what is basically a brute
force backwards search, we are finished before we even start
finding complementary PDBs. If a PDB contains all avail-
able variables, any optimal solution for such abstraction is
also necessarily an optimal solution in the real search space.
In such cases we stop building the perimeter and simply re-
turn the optimal plan found.

If no solution is found after the perimeter PDB is finished,
our method will start generating pattern collections stochas-
tically until either the generation time limit (900 secs) or
the overall PDB memory limit (4 GBs) is reached. CPC
decides whether to add a pattern collection to the list of se-
lected patterns if it is estimated that adding such PDB will
speed up search. We used the stratified selection time pre-
diction method described in the original paper to estimate
this. Note that when a pattern collection is added, all its pat-
terns are collected using the canonical combination method
in Fast Downward (from now on referred to as FD as it was
in the 2017 version we forked our code from).

Once all patterns have been selected, the corresponding
canonical PDB combination is used as an admissible heuris-
tic to do A* search for the sequential optimal track. We
also added a cost-bounded option, where we used a slightly
modified version of lazy greedy search as coded in FD. The
modification is that instead of pruning all generated succes-
sor nodes whose g (current path cost) value is above the
bounded cost, we actually prune all nodes whose g+h (cur-
rent path cost + estimated distance to goal) values are above
the bounded cost. This is only guaranteed to keep solution
cost at or below the bounded cost if the heuristic is admis-
sible. Since this is the case for our heuristic, we take ad-
vantage of the improved pruning capability. Note that this
track is an experimental version for us, I personally have
very little experience in cost-bounded search and make no
claim this is the most efficient search method. We thought it
would be nice to try the CPC heuristic in this setting as well.

We decided not to submit this planner for the Satisfic-
ing track due to the inherent incompatibility of our heuristic
with respect to this track. Generating large symbolic PDBs
cost a significant amount of time. Finding which patterns
make good pattern collections is even more costly because
most of the PDBs generated are never used for the actual
search. In Satisficing, the critical factor is finding a solution
as quickly as possible, and hence it is generally better when
using heuristics to pick those which do not incur in large
preprocessing costs.

Problem Definition
This section is identical to the original, included for com-
pleteness.

1A maximum amount of BDD nodes in the perimeter frontier of
10 million was also used. This was used as a failsafe on the actual
implementation, otherwise the code occasionally would get stuck
while generating the next step for the BDD generation.

We are interested in finding a set of pattern collections
Psel that minimizes the running time of A∗ using the heuris-
tic function obtained from Psel , denoted hPsel

. We approx-
imate the running time of A∗ guided by hPsel

while solv-
ing a task ∇, denoted T (Psel ,∇), as introduced by Lelis et
al. (2016).

T (Psel ,∇) = J(Psel ,∇)× (thPsel
+ tgen) .

Here, J(Psel ,∇) is the number of nodes A∗ employing hPsel

generates while solving ∇, thPsel
is hPsel

’s average time for
computing the heuristic value of a single node, and tgen
is the node generation time. Although the exact value of
T (Psel ,∇) is only known once A∗ finishes its search, one
is able to compute an approximation, denoted T̂ (Psel ,∇).
The value of T̂ (Psel ,∇) is computed by using approxima-
tions of thPsel

and tgen, which are obtained while computing
an estimate for J(Psel ,∇), denoted Ĵ(Psel ,∇). Ĵ(Psel ,∇)
is obtained by running Stratified Sampling (Chen 1992). We
write Ĵ instead of Ĵ(Psel ,∇) wheneverPsel and∇ are clear
from the context.

Stratified Sampling Evaluation
We used stratified sampling for our planner as described in
the original paper. We briefly summarize it here, for a de-
tailed discussion please see (Franco et al. 2017).

Stratified Sampling (SS) estimates numerical properties
(e.g., tree size) of search trees by sampling. Lelis et
al. (2014) showed that SS is unable to detect duplicates in
the search tree in its sampling procedure. Instead, we use
SS to estimate the size of the search tree S(I, b), for some
value b, and use this estimate as an approximation Ĵ for the
nodes generated by A∗. SS uses a stratification of the nodes
in the search tree rooted at I through a type system to guide
its sampling.

The type system we use accounts for a heuristic h as fol-
lows. Two nodes n1 and n2 in S(I, b) have the same type
if f(n1) = f(n2) and if n1 and n2 occur at the same level
of S. SS samples S and returns a set A of representative-
weight pairs, with one such pair for every unique type seen
during sampling. In the pair 〈n,w〉 in A for type t ∈ T , n is
the unique node of type t that was expanded during search
and w is an estimate of the number of nodes of type t in S.
Since SS is non-deterministic, every run of the algorithm can
generate a different set A. We call each run of SS a probe.
We refer the reader to SS’s original paper (Chen 1992) for
details.

In our pattern selection algorithm we run multiple
SS probes to generate a collection of vectors C =
{A1, A2, · · · , Am}. A vector AU is created from C by com-
bining all representative-weight pairs in C. For each unique
type t encountered in C we add to AU a representative pair
〈n, w̄〉 where n is selected at random from all nodes in C
of type t, and w̄ is the average w-value of all nodes in C of
type t. Each entry in AU represents SS’s prediction for the
number of nodes of a given type in the search tree.

We run SS with a time limit of 20 seconds and a space
limit of 20,000 entries in the AU structure. SS performs



1,000 probes with b = h(I), where h is CPC’s current
heuristic function. If SS completes all 1,000 probes without
violating the time and space limits, we increase b by 20%
and run another 1,000 probes. The process is repeated until
reaching either the time or the space limits. The AU struc-
ture is built from the A vectors collected in all probes.

Since our pattern selection approach needs to test multiple
heuristics, we run SS once using a type system T defined by
CPC’s current heuristic and store AU in memory. Then, Ĵ is
computed for a newly created heuristic h′ by iterating over
all representative node-weights 〈n, w̄〉 in AU and summing
the w̄-values for which h′(n) + g(n) ≤ b, where b is the
largest value used for probing with SS while building the
AU structure; this sum is our Ĵ for h′.

Adaptable Pattern Collection Generation
This section is a summary of the original papers, included
for completeness.

Algorithm 1 is a high-level overview of the search CPC
performs in the pattern collection space. CPC receives as
input a planning task∇, a base heuristic hbase (which could
be the h0 heuristic, i.e., a heuristic that returns zero to all
states in the state space), time and memory limits, t and m,
respectively, that specify when to stop running CPC. CPC
also receives another time limit, tstag , for deciding when the
parameters of CPC’s search must be readjusted. Smin and
Smax specify the minimum and maximum sizes of the PDBs
constructed. We use zero-one cost partitioning on each pat-
tern collection P so that its PDBs are additive. Once CPC
returns a set of pattern collections Psel , we use the canon-
ical heuristic function (Haslum et al. 2007) to combine all
the patterns in Psel into a heuristic function.

CPC creates pattern collections through calls of the func-
tion BINPACKINGUCB (see line 5), which we explain in
Section . Once a pattern collection P is created, CPC eval-
uates its quality with SS (see line 8), which estimates the
running time of A∗ using a heuristic composed of the pat-
terns already selected by CPC, Psel , added to the new P .
If SS estimates that A∗ solves ∇ faster with a heuristic cre-
ated from the set of pattern collections Psel ∪ P than with a
heuristic created from Psel , CPC adds P to Psel (see line 9).
Whenever CPC adds a pattern collection P to Psel , it per-
forms a local search by applying a mutation operator to P
(see line 7), trying to create other similar and helpful pat-
tern collections (the mutation operator is explained in Sec-
tion ). If SS estimates that P does not help reducing A∗’s
running time, then CPC creates a new P through another
BINPACKINGUCB function call in its next iteration.

The first time EVALUATE-SS is called, CPC runs SS us-
ing hbase as its type system to create a vector AU that is
used to produce estimates of the A∗ running time. Whenever
a call to EVALUATE-SS returns true, meaning that P helps
reducing A∗’s running time, CPC discards AU and runs SS
again with the heuristic constructed from Psel ∪ P as its
type system to generate a new AU . The intuition behind re-
running SS whenever a complementary pattern collection is
found is to allow SS to explore parts of the search tree that
were not explored in previous runs. Initially, the heuristic

Algorithm 1 Complementary PDBs Creation

Require: Planning task ∇, base heuristic hbase, time and
memory limits t and m respectively, stagnation time
tstag , minimum/maximum PDB size Smin , Smax .

Ensure: Selected set of pattern collections Psel

1: Psel ← ∅ // Psel is a set of pattern collections
2: P ← ∅ // P is a pattern collection
3: while time t or memory m limits are not exceeded do
4: if P = ∅ then
5: P ← BINPACKINGUCB(∇,Smin ,Smax )
6: else
7: P ← MUTATION(P)
8: if EVALUATE-SS(Psel ∪ P) then
9: Psel ← Psel ∪ P

10: else
11: P ← ∅
12: if (time since a P is added to Psel ) > Tstag then
13: adjust Smin ,Smax

14: return Psel

used in SS’s sampling tend to be weak, and many of the
states in the AU vector SS produces will not be expanded by
A∗ after the new P is added to Psel . By running SS when-
ever a better heuristic is constructed, one allows SS to also
prune such nodes and focus its sampling on nodes that the
current heuristic is not able to prune.

Bin-Packing Algorithms
In this section we describe the methods we consider for gen-
erating candidate pattern collections.

Regular Bin-Packing (RBP) We adapt the genetic algo-
rithm method introduced by Edelkamp (2006) for selecting
a collection of patterns. Edelkamp’s method, which we call
Regular Bin-Packing (RBP), generates an initial pattern col-
lection P as follows. RBP iteratively selects a unique and
random variable v from V and adds it to a subset B of vari-
ables, called “bin”, that is initially empty. Once a PDB con-
structed from the subset of variables in B exceeds a size
limit M , RBP starts adding the randomly selected variables
to another bin. This process continues until all variables
from V have been added to a bin. Note that since RBP
selects unique variables, the bins represent a collection of
disjoint patterns.

Once the pattern collection P is generated, RBP iterates
through each pattern p inP and removes from p any variable
not causally related to other variables in p (Helmert 2004).

Causal Bin-Packing (CBP) Our CBP approach differs
from RBP only in the way it selects the variables to be added
to the bins. Instead of choosing them randomly as is done
in RBP, CBP selects only the first variable of each bin ran-
domly and then only adds to a bin B variables which are
causally related to the variables already in B. In case there
are multiple causally related variables to be added, CBP
chooses one at random.

We observed empirically in (Franco et al. 2017) that RBP
tends to generate pattern collections that result in PDBs of



similar sizes, and that CBP tends to generate pattern collec-
tions that result in PDBs of various sizes. This is because
RBP removes causally unrelated variables after the variable
selection is done. By contrast, CBP greedily selects causally
related variables as the patterns are created. As a result, usu-
ally the first pattern created by CBP will have more variables
than all the other patterns created.

Combination of Bin-Packing Approaches with UCB1
UCB1 is a version of UCB whose regret grows logarithmi-
cally as a function of the number of actions take. We used
this algorithm to choose in situ how frequently to use either
of both pattern generation algorithms.

We used the UCB1 formula (Auer 2002), x̄j +
√

2 lnn
nj

,
to decide which arm (algorithm) to use next. Here, x̄j is the
average reward received by algorithm j, n is the total num-
ber of trials made (i.e., calls to a bin-packing algorithm), and
nj is the number of times algorithm j was called. We artifi-
cially initialize x̄j to 10 for all j to ensure that all algorithms
are tested a few times before UCB1 can express a strong
commitment to a particular option. This helps to reduce
the chances of UCB1’s selection being unduly influenced
by the stochastic nature of the bin-packing approaches. A
bin-packing algorithm receives a reward of +1 if it provides
a P that is able to reduce the T̂ -value as estimated by SS;
the reward is 0 otherwise.

In (Franco et al. 2017) we performed a systematic exper-
iment on the optimal STRIPS benchmark suite distributed
with the FD (Helmert 2006). The coverage results for the
two approaches showed using UCB1 to combine both ap-
proaches was significantly better than using either one or
simply choosing them with equal probability. See the origi-
nal paper for a more detailed discussion.

Mutation Operator
CPC performs mutations on a given pattern collection P
whenever P is deemed as promising by SS. That is, if SS
estimates that P will not reduce the A∗ running time, CPC
sets P to ∅, and in the next iteration of CPC’s while loop
another P is created with our UCB approach. On the other
hand, if SS predicts that P is able to reduce A∗’s running
time, then CPC adds P to Psel and, in the next iteration of
its while loop, it applies a mutation operator to P , trying to
create another pattern collection that might further reduce
A∗’s running time. More details in the original paper.

Dynamic Parameter Adjustment
Some of the instances benefit from a large number of small
PDBs, while others require a small number of large PDBs.
Thus, instead of fixing the PDB size throughout CPC’s pat-
tern selection search, we adjust the size of the PDBs, M , to
be constructed during search.

To be specific, if after tstag seconds we are unable to add
a new complementary pattern collection to Psel , we increase
the size M of the PDBs we generate. The intuition is that if
our search procedure does not find complementary patterns
for the current PDB size, M , then we assume that this par-
ticular planning problem might benefit from larger PDBs.

In the original paper, it was shown that a dynamic range of
PDB sizes worked better for our benchmark tests compared
to using any of multiple a priori fixed sizes.

Empirically-based Choices
1. We used CPC-S-P configuration from the original paper,

because it had the overall best results.

2. We only used symbolic PDBs. (Franco et al. 2017) be-
cause explicit PDBs did not support conditional effects,
while symbolic PDBs (as implemented) do. (Franco et al.
2017) did not include any domains with conditional ef-
fects. Secondly, symbolic PDBs performed significantly
better overall for the paper’s experiments.2

3. We switched to a 64 bits build. After adjusting the size
and the maximum number of nodes on the frontier for
symbolic PDBs, it was found that more problems were
solved, when using the IPC 2018 limits. Both limits were
doubled. Limiting the maximum number of nodes in the
BDDs frontiers is an implementation failsafe to ensure the
memory and time limits are respected.

Results
Following is an ablation-type study were we analyze which
components worked best (Table 1). We used the New
Zealand Nesi Cluster. Domain names have been abbrevi-
ated to either the first 3 letters or the first letter of each word
for spaces saving purposes.

Table 1 shows that the combination of bin packed methods
(CBP, RBP), aided by an initial perimeter PDB, and regu-
lated by UCB1 (Comp2/Reg) was better than any of the indi-
vidual methods on their own. This confirms our expectations
and has a similar behaviour as in (Franco et al. 2017) which
used all previous IPC domains (seq-opt). Dropping the ini-
tial perimeter PDB reduced the overall number of solved
problems by 10. Interestingly there was only one domain
were the perimeter PDB really helped albeit quite signifi-
cantly, we would have solved approximately 11 less prob-
lems for the Petri Net Alignment (PNA) without the perime-
ter PDB. Otherwise, the impact of the Perimeter PDB is min-
imal. In general, the Perimeter PDB works well on domains
where getting a good heuristic value is difficult or not that
important, e.g. Openstacks. Additionally, if no perimeter is
used and we only generate patterns using the RBP generator,
6 fewer problems were solved, the biggest effect is in Snake
(Sna) where we solved 3 fewer problems. On the other hand,
when only using CBP as a pattern generator, results in no
problems lost for Snake but solving 4 fewer Agricola (Agr)
and Termes (Ter) problems. However, from previous exper-
iments do note that whether CBP, RBP or a combination of
both is the best option is very much dependent on the do-
main. There is no obvious method to predict a priori which
bin packing method is best for the current problem.

2Note that explicit PDBS can outperform symbolic PDBs on
some domains. The reason is that while symbolic PDBs can deal
with larger abstractions, they are also more expensive to evaluate.
For those domains where it is easy to find a large amount of good
quality complementary patterns, explicit can be the better option.



Table 1: Coverage of Complenmentary2 Modules. Reg stands for all components active. NoPer stands for perimeter PDB inactivated. RBP
and CBP also have Perimeter inactive.

Domain Agr Cal DN Nur OSS PNA Set Sna Spi Ter Total
Comp2/Reg 6 12 13 12 12 19 9 14 11 16 124

Comp2/NoPer 6 12 14 12 12 8 9 14 11 16 114
Comp2/RBP 5 12 13 12 12 7 9 11 13 14 108
Comp2/CBP 2 12 13 12 12 8 9 14 12 12 106

Competition result bellow included for Completeness
Comp2 6 12 12 12 13 18 9 14 12 16 124

Concluding Remarks
The competition results were quite good for optimal plan-
ning, where we were the runners up (winner was 126 prob-
lems while we solved 124). We were also the best non-
portfolio approach.

Future research avenues, as mentioned in (Franco et al.
2017), are using more (or improved) pattern generator meth-
ods, keep working on improving in situ selection of pattern
generators, and analyzing the impact of using online PDBs
for selection purposes.

Acknowledgments
S. Franco and L. Lelis were supported by Brazil’s CAPES
(Science Without Borders) and FAPEMIG. M. Barley was
supported by the Air Force Office of Scientific Research,
Asian Office of Aerospace Research and Development
(AOARD) under award number FA2386-15-1-4069. Thanks
to Dr. Pat Riddle for her editorial support. Thanks to the Fast
Downward (and lab testing tool) developers for sharing their
code. It is easy to take it for granted, since both have been
available for so long, but the constant maintenance and sup-
port work is very much appreciated. The complementary1
Planner was build on top of an early 2017 FD fork.

References
P. Auer. Using confidence bounds for exploitation-exploration
trade-offs. Journal of Machine Learning Research, 3:397–422,
2002.
Michael W. Barley, Santiago Franco, and Patricia J. Riddle. Over-
coming the utility problem in heuristic generation: Why time mat-
ters. In Proc. ICAPS, 2014.
P.-C. Chen. Heuristic sampling: A method for predicting the per-
formance of tree searching programs. SIAM Journal on Computing,
21:295–315, 1992.
Joseph C. Culberson and Jonathan Schaeffer. Pattern databases.
Computational Intelligence, 14(3):318–334, 1998.
Stefan Edelkamp. Planning with pattern databases. In Proc. ECP,
pages 13–24, 2001.
Stefan Edelkamp. Automated creation of pattern database search
heuristics. In Proc. MOCHART, pages 35–50, 2006.
Ariel Felner, Richard E. Korf, and Sarit Hanan. Additive pattern
database heuristics. Journal of Artificial Intelligence Research,
22:279–318, 2004.
Santiago Franco, Álvaro Torralba, Levi H. S. Lelis, and Mike Bar-
ley. On creating complementary pattern databases. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial In-
telligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017,
pages 4302–4309, 2017.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal
basis for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.
Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven
Koenig. Domain-independent construction of pattern database
heuristics for cost-optimal planning. In Proc. AAAI, pages 1007–
1012, 2007.
Malte Helmert. A planning heuristic based on causal graph analy-
sis. In Proc. ICAPS, pages 161–170, 2004.
Malte Helmert. The Fast Downward planning system. Journal of
Artificial Intelligence Research, 26:191–246, 2006.
R. C. Holte, A. Felner, J. Newton, R. Meshulam, and D. Furcy.
Maximizing over multiple pattern databases speeds up heuristic
search. Artificial Intelligence, 170(16–17):1123–1136, 2006.
Peter Kissmann and Stefan Edelkamp. Improving cost-optimal
domain-independent symbolic planning. In Proc. AAAI, pages
992–997, 2011.
Levi H. S. Lelis, Roni Stern, and Nathan R. Sturtevant. Estimating
search tree size with duplicate detection. In Proc. SOCS, pages
114–122, 2014.
Levi H. S. Lelis, Santiago Franco, Marvin Abisrror, Mike Barley,
Sandra Zilles, and Robert C. Holte. Heuristic subset selection in
classical planning. In Proc. IJCAI, pages 3185–3191, 2016.


