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Abstract

The automated construction of search heuristics is a
long-term aim in artificial intelligence, while pattern
databases (PDBs) serve as memory-based abstraction
heuristics generated prior to the search to reduce com-
putational efforts.
In the competing IPC 2018 system Planning-PDB we
have taken a state of the art planner (Franco et al., 2017)
and augmented a part of its pattern selection process,
namely the bin packing subroutine, to improve the qual-
ity of the patterns.

Introduction
The automated generation of search heuristics is one of
the long time goals of AI and goes back to early work of
Gaschnig (1979), Pearl (1985), and Preditis (1993). Heuris-
tics refer to state-space abstractions, and for lower-bound
estimates each path in the original state space has to map
to a corresponding —possibly shorter one— in the abstract
state space.

Searching with heuristics based on abstractions has yield
many positive results (e.g, Holte, Grajkowski and Tanner,
2005), but also showed one major drawback: in the worst
case, the time used in searching the abstract state spaces may
exceed the time saved for searching the overall search space
(Valtorta, 1984).

With the advent of pattern databases (PDBs), for the com-
putational effort in searching the abstract state spaces is
spent prior to the search. In concrete space search only
lookups have to be executed. This research initiated by Cul-
berson and Schaeffer (1998) let to a revival of the interest
in abstraction heuristics. Initial results in sliding-tile puzzles
quickly carried over to a number of combinatorial search do-
mains, and helped to solve random instances of the Rubik’s
cube optimally for the very first time (Korf, 1997).

The complete exploration of the abstract state space yields
a lower bound, and can be extended to include action cost.
The combination of several databases into one, however, is
tricky (Haslum, Botea, Helmert, Bonet, and Koenig, 2007).
While the maximum of two PDBs is always a lower bound,
the sum is usually not. Disjoint PDBs (Felner, Korf, 2004)
showed that with a clever selection of disjoint patterns ad-
missibility can be preserved. Holte et al. (2004) showed that

in several cases, the combination of many small PDBs can
outperform a large one.

The use of PDBs in AI planning was pioneered by
Edelkamp (2001). Initially, the notion of a pattern as a selec-
tion of tiles (or a set of labels in Rubik’s cube) has been gen-
eralized to state-spaces in vector notation (Holte and Hernd-
vlgyi, 1999). Most AI planning problems can be translated
into a state-space of finite domain variables (Helmert, 2004),
so that a selection of variables leads to projections of pre-
and postconditions of actions.

The main limitation of PDBs is the amount of mem-
ory needed, as during their construction process, the ab-
stract state space may prove to be too large for the avail-
able resources in RAM. To deal with these large memory re-
quirements, PDBs have been extended to support symbolic
search, which succinctly represents state sets compactly as
binary decision diagrams (Edelkamp, 2002). Still, the auto-
mated selection of the most informative patterns remains a
combinatorial challenge. There is an exponential number of
variable sets to choose from, not counting alternative pro-
jection and cost partitioning methods (Karpas, Katz, and
Markovitch, 2011; Pommerening, 2017) in distributing the
cost of actions over different abstract search spaces.

Hence, the automated selection of possibly additive
heuristics requires approximations. Hill-climbing strategies
have been proposed (Haslum, Botea, Helmert, Bonet, and
Koenig, 2007), where a PDB on (n − 1) variables serves
as an estimate for a PDB on n variables, as well as more
general optimization schemes such as genetic programming
(Edelkamp, 2007; Franco et al. 2017). They are using the
bitvector of variables selected as genes and the quality of
the PDB as the fitness function.

The quality of the PDBs – in terms of the returned lower
bound on the solution cost – can only be estimated. Usually,
this involves first generating the PDB and then evaluating
it, taking the average heuristic estimate (Edelkamp, 2001)
or a weighted sum (Korf, 1997), or sampling the state space
(Franco et al., 2017).

For participating in the international planning competition
2018, we have started our implementation efforts by taking
a state-of-the-art planner (Franco et al, 2017) and came up
with new ways to improve the automated pattern selection
process.

We first briefly define the setting of cost-optimal action



planning and give a characterization of the pattern database
selection problem. Afterwards, we move our focus to the ge-
netic encoding of the problem and what fitness function we
have used for determining the PDBs. We concentrate on the
pattern database equivalent of the NP-hard bin packing prob-
lem (BPP) for choosing sets of informative pattern database
that are known to respect the limits in main memory. As so-
lutions for the the BPP, we consider several different algo-
rithmic approaches.

Problem Statement
Even though many planning domains are lifted int the tex-
tual PDDL input, in the formal description, we start with
grounded planning problems in SAS+ representation, as
usually generated by a planner in its static analysis stage. A
sequential planning task P , is characterized as a quadruple
consisting of finite-domain state variables V , initial state I,
goal condition G, and operators (grounded actions) O with
pre- and postconditions pre(o), eff(o), o ∈ O. For the sake
of simplicity, we consider all conditions as conjunctions of
state variable assignments (the planner itself deals with a
much larger PDDL fragment, including ADL constructs and
conditional effects). Each operator o is associated with a cost
c(o), whose sum has to be minimized over all plans that lead
from the initial state to one of the goals.

The state-space S induced by such planning task can be
viewed as a subset of the cross product of the domains rep-
resenting the state variables, i.e., for V = {v1, . . . , vn} we
have S ⊆ dom(v1)× . . .× dom(vn), where dom(v) is the
finite domain of possible value assignments to v. The set of
reachable states is generated on-the-fly, starting with the ini-
tial state via applying the operators.

A heuristic h is a mapping of the set of states S to the
positive reals R≥0. Usually, we have h(s) = 0, if and only
if a state s satisfies the goal condition. The heuristic is called
admissible, if h(s) is a lower bound of the cost of all goal-
reaching plans starting at s. Two heuristics h1 and h2 are
additive, if h defined by h(s) = h1(s)+h2(s) for all s ∈ S,
is admissible. It is consistent (the usual case for PDBs), if
for operator o from s to s′ we have h(s′)−h(s)+ c(o) ≥ 0.
For admissible heuristics, search algorithms like A* (Hart
et al, 1968) will return optimal plans. Moreover, if h is also
consistent, no reopening takes place.

A state space abstraction φ is a mapping from states in
the original state space S to the states in the abstract state
space A. As the problem is implicitly given, the abstraction
is generated by abstracting the operators, the initial state and
the goal conditions. Plans in the original space have coun-
terparts in the abstract space, but not vice versa. A pattern
database is a lookup table that for each abstract state a pro-
vides the (minimal) cost value from a to the set of abstract
goal states. This value, in turn, is a lower bound for reaching
the goal of the state that is mapped to a in the original state
space.

PDBs are generated in a backwards enumeration of the
abstract state space starting with the abstract goal descrip-
tion. As this assumes that operators to be reversible, in ex-
plicit search, the set of reachable states may have to gener-
ated beforehand. There are options to invert planning oper-

ators, but for an underspecified goal state, backward search
can be cumbersome. In symbolic search with BDDs going
backward is much more natural.

Showing that PDBs yield heuristics that are both con-
sistent and admissible is rather trivial (Edelkamp, 2000;
Haslum et al., 2005), as we construct them on an fully gen-
erated abstracted state-space. It has also been shown that for
planning PDBs the sum of heuristic values obtained via pro-
jection to a disjoint variable set is admissible (Edelkamp,
2001). The projection of state variables induces a projection
of operators and is a special case of what is called 0/1 parti-
tioning. In a 0/1 partitioning, the operators in abstract space
are mapped to either 0 or c(o), so that on operator cannot
contribute to more than one PDB. There are complex ver-
sions of cost partitioning, that distribute fractional cost of
operators o, still adding to at most c(o), to several abstract
state spaces (Pommerening, 2017).

For ease of notation, we identify a pattern database with
its abstraction function φ. As we want to optimize pattern
selection via a genetic algorithms, the fitness f of a pattern
database φ (and represented as a set of pairs (a, h(a)) ∈ φ)
is the average heuristic estimate

f(φ) =
∑

(a,h(a))∈φ

h(a)/|φ|,

where |φ| denotes the size of the pattern databases de-
noted by φ.

The storage of one PDB in explicit search is a (perfect)
hash table, while in symbolic search all abstract states of a
certain heuristic value are kept succinctly in form of a BDD.

For several PDBs φ1, . . . , φl and cost partitioning func-
tion γ, the values are added up. We have

f(φ1, . . . , φl) =

l∑
i=1

∑
(a,hi,γ(a))∈φi

hi,γ(a)/|φi|.

As each PDB consumes a significant amount of space,
the pattern selection problem is to find a selection of pattern
databases that fit into main memory, and optimizes f .

One very simple PDB called the perimeter, is an unab-
stracted backward search until resources are exhausted, set-
ting the value of all unreached abstract space to the max-
imum perimeter reached. In several simpler planning task,
the perimeter PDB search already solved the planning prob-
lem. The unexpected good results of the otherwise blind
bidirectional symbolic baseline planner illustrates the power
of this search component.

Genetic Algorithms for Pattern Selection
A genetic algorithm (Holland, 1975) is a general optimiza-
tion method, and has been identified, e.g., by Schwefel as
a member of the class defined as evolutionary strategies. It
refers to the recombination, selection, and mutation of genes
(states in a state-space) to optimize the fitness (alias objec-
tive) function.

In a genetic algorithm (GA), a population of candidate
solutions to an optimization problem is sequentially evolved



v1 v2 v3 v4 v5 v6 v7 v8
PDB1 0 0 0 0 0 1 0 1
PDB2 0 1 0 0 0 0 1 0
PDB3 0 1 0 0 1 0 0 0
PDB4 0 0 1 1 0 0 0 0

Table 1: An example set of pattern (database) variable selec-
tion, forming a 0/1 GA bitstring providing one solution of
the bin packing problem.

to generate a better performing population of solutions, by
mimicing the process of evolution. Each candidate solution
has a set of properties which can be mutated and recom-
bined. Traditionally, candidate solutions are represented as
0/1 bitstrings, but there are other evolutionary strategies that
work on real-valued state vectors.

For the Pattern-PDB competing planner in IPC 2018, a
binary representation of the genes was sufficient. An early
approach for the automated selection of (projection) PDB
variables by Edelkamp (2007) employed a GA with genes
representing state-space variable patterns in the form of a 0/1
matrix G, where Gi,j denotes that state variable i is chosen
in PDB j (see Table 1). Besides flipping and setting bits,
mutations may also add and delete PDBs in the set.

In this setting, in ordert to evaluate the fitness function,
the corresponding PDBs has to be generated – a time-
consuming operation, which nevertheless pays off in most
cases. The approach has been refined by sampling tech-
niques (Lelis et al., 2016; Franco et al. 2017), which is now
available in the fast-downward planning system (Helmert,
2006).

The PDBs corresponding to the bitvectors in the GA have
to fit into main memory, so we have to restrict the generation
of offsprings to the ones that represent a set of PDB that fit
into RAM. If time becomes an issue we also have to stop
evolving patterns to invoke the overall search (in our case
progressing explicit states) eventually.

An alternative for pattern selection, which is also used as
a subroutine within the GA, is to apply bin packing.

Bin Packing for Pattern Selection
The bin packing problem (BPP) is one of the first problems
shown to be NP-hard (Garey and Johnson, 1979). Given ob-
jects of integer size a1, . . . , an and maximum bin sizeC, the
problem is to find the minimum number of bins k so that the
established mapping f : {1, . . . , n} → {1, . . . , k} of ob-
jects to bins maintains

∑
f(a)=i a ≤ C for all i ≤ k. The

problem is NP-hard in general, but there are good approxi-
mation strategies such as first-fit and best-fit decreasing (be-
ing at most 11/9 off the optimal solution (Dósa, 2007). The
NP-reduction from number partitioning (where a set of ob-
jects must be split into two equally-sized parts) fits into one
sentence: if

∑n
i=1 ai is odd, then number partitioning is not

solvable; and if
∑n
i=1 ai is even, then the objects have a per-

fect fit into two bins of size
∑n
i=1 ai/2.

In the PDBs selection process, however, the definition of
the BPP is slightly different. We estimate the size of the PDB

by computing the product (not the sum) of the variable do-
main sizes, so that for a maximum bin capacity M imposed
by the available memory, we find the minimum number of
bins k, so that the established mapping f of objects to bins
maintains

∏
f(a)=i a ≤ M for all i ≤ k. By taking the logs

on both sides, we are back to sums, but the sizes become
fractional. In this case,

∏
f(a)=i is an upper bound on the

number of abstract states needed. This is true for both ex-
plicit and symbolic pattern databases.

Taking the product of variable domains is a coarse upper
bound. In some domains, the abstract state spaces are much
smaller. Bin packing chooses the memory bound on each
individual PDB, instead of limiting their sum. Moreover,
for symbolic search, the correlation between the cross prod-
uct of the domains and the memory needs is rather weak.
However, by its simplicity and effectiveness this form of bin
packing currently is the state-of-the-art for PDB construc-
tion in planning. Generalizations to other variable abstrac-
tions and cost partitionings are possible.

As bin packing is pseudo-polynomial, small integer
weights in the input lead to a polynomial-time dynamic pro-
gramming algorithm (Garey and Johnson, 1979). Moreover,
for this case, there are effective bin completion strategies
that are featured in depth-first branch-and-bound algorithms
for bin packing (Korf 2002, 2003). The key property that
makes the bin completion efficient is a dominance condi-
tion on the feasible completions of a bin. The algorithm that
partitions the objects into included, excluded and remaining
ones relies on perfectly fitting elements and forced assign-
ments, and thus, on integer values for a. In the given setting
of real-valued object sizes that are multiplied (or logarithms
that are added) this might be less often the case.

By limiting the amount of optimization time for each BPP,
we do not insist on optimal solutions, but we want fast ap-
proximation strategies that are close-to-optimal. Recall that
suboptimal solutions to the BPP do not mean suboptimal
solutions to the planning problem. In fact, all solutions to
the BPP lead to admissible heuristics and therefore optimal
plans.

For the sake of generality, we strive for solutions to the
problem, which do not include problem-specific knowledge
but still work efficiently. Using a general framework also en-
ables us to participate in future solver developments. There-
fore, we decided for the moment to focus on the First-Fit
on-line algorithm1.

There are many approximation algorithms for bin pack-
ing. First-fit increasing is a fast on-line approximation algo-
rithm that first sorts the objects according to their sizes and,
then, starts placing the objects into the bins, putting an object
to the first bin it fits into. In terms of planning, the variables
are sorted by the size of their domains in a decreasing order.
Next, the biggest variable is chosen and packed at the same
bin with the rest of variables which are related to it if there
are space enough in the bin. This process is repeated until
all variables are processed.

1Even though in principle, BPP can be specified as a PDDL
planning problem on its own, initial experiments of solving such a
specification with off-the-shelf-planners were not promising.



For the sake of completeness, we provide its trivial imple-
mentation.

int firstfit() {
int c=0; double bin[n];
for (int i=0;i<n;i++) bin[i] = C;
for (int i=0;i<n;i++)

for (int j=0;j<n;j++)
if (bin[j]-a[i] >=0) {

bin[j]-=a[i]; break; }
for(int i=0;i<n;i++)

if (bin[i] != C) c++;
return c;

}

International Planning Competition 2018
For the International Planning Competition 2018, we have
worked taken a planner that we considered to be state of the
art (Franco et al, 2017), and have tried to improve it adding
different Bin Packing algorithms in the process of pattern
selection. Because of time constraints, we could not add or
test different solutions to the BPP (based on Monte-Carlo
tree search of Constraint Programming) inside of the plan-
ner and check reliably if it worked better than the on-line al-
gorithms, so we entered the competition without. However,
that is going to be added for future work.

Results
Following the announcement of the results at ICAPS 2018,
we have started analyzing the results, first by reviewing the
competition logs, which were made available on the compe-
titions website2, and afterwards by running different config-
urations on the competition benchmarks (see Table 2) on our
cluster that utilized Intel Xeon E5-2660 V4 with 2.00GHz
processors. We compare this version with MinizincPDBs
(Moraru et al, 2018), one that solves the pattern selection
problem by encoding it into a Constraint Programming prob-
lem. For our experiments, we tested on four versions, the
first being the competition version, using 900 seconds for
optimization and having a perimeter heuristic, then varia-
tions with 300 seconds of optimization and with no perime-
ter.

Looking at Table 2, we deduce that there was little param-
eter optimization we could have done for this competition,
even though an Oracle planner could have combined our dif-
ferent version to manage to tie the winner of the competition.
The perimeter heuristic is vital for a domain like Petri-net-
alignment, while the difference in the time allocated for the
GA isn’t as important as we were expecting.

Concluding Remarks
This years results are very satisfactory for us on a whole.
Our planner was only four instances away from the winning
planner, and had some interesting results in comparison with
it’s sister planner, Complementary. From an analysis of the
competition logs, the best performing 5 out of 6 planners
were based on our inventions of pattern database abstraction

2https://ipc2018-classical.bitbucket.io/#planners

heuristics and/or symbolic search, while the winning port-
folio planner used systems based on such planners for more
than half of its successful results. This reassures us that in
our research we are working on the edge of best perform-
ing cost-optimal planning techniques and that more research
work on this can lead to a very well rounded domain inde-
pendent cost-optimal planner.
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