
Fast Downward Remix

Jendrik Seipp
University of Basel
Basel, Switzerland

jendrik.seipp@unibas.ch

Fast Downward Remix is a portfolio planner, based on
the Fast Downward planning system (Helmert 2006). It uses
the greedy algorithm by Streeter, Golovin, and Smith (2007)
to compute a sequential static portfolio of Fast Down-
ward configurations in an offline preprocessing phase. Fast
Downward Remix participated in the sequential satisficing,
bounded-cost and agile tracks of the International Planning
Competition (IPC) 2018.

Definitions
Before we describe the greedy portfolio computation algo-
rithm, we give some definitions concerning planning tasks,
sequential portfolios and quality metrics.

Informally speaking, a classical planning task consists of
an initial state, a goal description and a set of operators. In
the setting of satisficing planning, solving a planning task
entails finding any operator sequence that leads from the
initial state to a goal state, with a preference for cheap so-
lutions. On the other hand, in the setting of agile planning,
the task is to find solutions as fast as possible, regardless of
the solution cost. The third setting we consider in this plan-
ner abstract is bounded-cost planning, where plans must not
be more expensive than a given bound.

We define c(A, I, t) as the cost of the solution a planning
algorithm A finds for planning task I within time t, or as
∞ if it does not find a solution in that time. Furthermore,
we let c?(I) denote the minimum known solution cost for
task I (approximated by a set of Fast Downward configura-
tions). Following IPC evaluation criteria, we define the solu-
tion quality qsol(A, I, t) = c?(I)

c(A,I,t) as the minimum known
solution cost divided by the solution cost achieved by A in
time t.

A sequential planning portfolio P is a sequence of pairs
〈A, t〉 where A is a planning algorithm and t ∈ N>0 is the
time limit in seconds for A. We denote the portfolio resulting
from appending a component 〈A, t〉 to a portfolio P by P ⊕
〈A, t〉.

We now define two quality scores q(P, I) that evaluate the
performance of a portfolio P on task I . In the satisficing and
bounded-cost settings we use the solution quality qsol(P, I).
It is the maximum solution quality any of the components in
P achieves for I , i.e.,

Algorithm 1 Greedy algorithm by Streeter, Golovin, and
Smith (2007) computing a sequential portfolio for a given
quality function q, algorithms A, instances I and total port-
folio runtime T .

1: function COMPUTEPORTFOLIO(q, A, I, T )
2: P ← 〈〉
3: tused ← 0
4: while tmax = T − tused > 0 do
5: 〈A, t〉 ← argmax〈A′,t′〉∈A×[1,tmax] q∆(P,A′, t′, I)
6: if q∆(P,A, t, I) = 0 then
7: return P
8: P ← P ⊕ 〈A, t〉
9: tused ← tused + t

10: return P

qsol(P, I) = max
〈A,t〉∈P

qsol(A, I, t).

Following IPC 2018 evaluation criteria, for the agile plan-
ning setting we define agile quality as

qagile(P, I) =


0 if t(P, I) > T

1 if t(P, I) ≤ 1

1− log10 t(P,I)
log10(T ) otherwise

,

where t(P, I) is the time that portfolio P needs to solve task
I and T is the total portfolio runtime.

A portfolio’s score on multiple tasks A is defined as the
sum of the individual scores, i.e., q(P, I) =

∑
I∈I q(P, I),

and the score of the empty portfolio is always 0.

Greedy Portfolio Computation Algorithm
We now describe the greedy algorithm by Streeter, Golovin,
and Smith (2007). Given a quality score q, a set of algo-
rithms A, a set of tasks I and the total portfolio runtime T ,
the greedy algorithm iteratively constructs a sequential port-
folio.

As shown in Algorithm 1, the procedure starts with an
empty portfolio P (line 2) and then iteratively selects an al-
gorithm A ∈ A and a time limit t ∈ [1, tmax] (discretized
to seconds) for A such that adding 〈A, t〉 to P improves P



the most (line 5). The quality improvement between P and
P ⊕ 〈A, t〉 is measured by the q∆ function:

q∆(P,A, t, I) =
∑

I∈I q(P ⊕ 〈A, t〉, I)− q(P, I)

t

If appending the pair 〈A, t〉 to P does not change the
portfolio quality anymore, we converged and can terminate
(line 6). Otherwise, the pair is appended to P (line 8). This
process iterates until the sum of the runtimes in the portfo-
lio components exceeds the maximum porfolio runtime T
(line 4).

Training Benchmark Set
Our set of training instances consists of almost all tasks
from the satisficing tracks of IPC 1998–2014 plus tasks from
various other sources: compilations of conformant planning
tasks (Palacios and Geffner 2009), finite-state controller
synthesis problems (Bonet, Palacios, and Geffner 2009),
genome edit distance problems (Haslum 2011), alarm pro-
cessing tasks for power networks (Haslum and Grastien
2011), and Briefcaseworld tasks from the FF/IPP domain
collection.1 In total, we use 2115 training instances.

Planning Algorithms
We collect our input planning algorithms from several
sources. First, we use the component algorithms of the fol-
lowing portfolios that participated in the sequential satisfic-
ing track of IPC 2014:

• Fast Downward Cedalion (Seipp, Sievers, and Hutter
2014; Seipp et al. 2015): 18 algorithms2

• Fast Downward Stone Soup 2014 (Röger, Pommerening,
and Seipp 2014): 27 algorithms3

• Fast Downward Uniform (Seipp, Braun, and Garimort
2014): 21 algorithms

Second, for each of the 66 algorithms A above, we add
another version A′ which only differs from A in that A′ uses
an additional type-based open list (Xie et al. 2014) with the
type (g), i.e., the distance to the initial state. Both A and A′

alternate between their open lists (Röger and Helmert 2010).
Third, we add 12 different variants of the configuration

used in the first iteration of LAMA 2011 (Richter, Westphal,
and Helmert 2011). We vary the following parameters:

• preferred successors first ∈ {true, false}:
Consider states reached via preferred operators first?

• randomize successors ∈ {true, false}:
Randomize the order in which successors are generated?4

1http://fai.cs.uni-saarland.de/hoffmann/
ff-domains.html

2The only change we make to the algorithms is disabling the
YAHSP lookahead (Vidal 2004).

3We ignore the anytime algorithm which is run after a solution
has been found.

4When randomizing successors and considering preferred suc-
cessors first, randomization happens before preferred successors
are moved to the front.

• additional type-based open list ∈ {none, (g), (hFF, g)}:
Alternate between only the original open lists used by
the first iteration of LAMA 2011 or include an additional
type-based open list (Xie et al. 2014) with the type (g) or
(hFF, g)?
In total, this leaves us with (18 + 27 + 21) · 2 + 12 =

144 planner configurations as input of the greedy portfolio
computation algorithm.

Resulting Portfolios
Passing the algorithms and benchmarks described above to
the greedy portfolio computation algorithm, together with
the quality score qsol and time limit T=1800 seconds, we
obtain a portfolio for the satisficing and bounded-cost tracks
that consists of 150 component algorithms, 104 of which are
unique. (The greedy algorithm often adds the same planner
configuration multiple times with different time limits.) The
minimum and maximum time limit are 1 and 149 seconds.
On the training set, the portfolio achieves an overall quality
score of 2003.89, which is much better than the best compo-
nent algorithm with a score of 1650.40. If we had an oracle
to select the best algorithm (getting allotted the full 1800
seconds) for each instance, we could reach a total score of
2073.

When we use the qagile score and a time limit of 300
seconds the resulting portfolio achieves an agile score of
1743.62 points, while the best single algorithm scores
1718.22 points. The agile portfolio consists of 47 configura-
tions, 37 of which are unique. They are run with time limits
ranging from 1 to 36 seconds.

Executing Sequential Portfolios
In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequential
order unspecified. With the simplifying assumption that all
planner runs use the full assigned time and do not commu-
nicate information, the order is indeed irrelevant. In reality
the situation is more complex.

First, the Fast Downward planner uses a preprocessing
phase that we need to run once before we start the port-
folio, so we do not have the full 1800 seconds available.5
Therefore, we treat per-algorithm time limits defined by the
portfolio as relative, rather than absolute values: whenever
we start an algorithm, we compute the total allotted time of
this and all following algorithms and scale it to the actually
remaining computation time. We then assign the respective
scaled time to the run. As a result, the last algorithm is al-
lowed to use all of the remaining time.

Second, in the satisficing setting we would like to use the
cost of a plan found by one algorithm to prune the search
of subsequent planner runs (in the bounded-cost and agile
setting we stop after finding the first valid plan). We there-
fore use the best solution found so far for pruning based on

5The preprocessing phase consists of converting the input
PDDL task (Fox and Long 2003) into a SAS+ task (Bäckström and
Nebel 1995) with the Fast Downward translator component and
pruning irrelevant operators via computing h2 mutexes (Alcázar
and Torralba 2015)



g values: only paths in the state space that are cheaper than
the best solution found so far are pursued.

Acknowledgments
For a portfolio planner, not those who combined the com-
ponents deserve the main credit but those who contributed
them. We therefore wish to thank all Fast Downward con-
tributors and the people who came up with the algorithms we
use in our portfolio. We are also grateful to Álvaro Torralba
and Vidal Alcázar for allowing us to use their h2 mutexes
code.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-
ning. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilber-
stein, S., eds., Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS
2015), 2–6. AAAI Press.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Auto-
matic derivation of memoryless policies and finite-state con-
trollers using classical planners. In Gerevini, A.; Howe, A.;
Cesta, A.; and Refanidis, I., eds., Proceedings of the Nine-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2009), 34–41. AAAI Press.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Haslum, P., and Grastien, A. 2011. Diagnosis as planning:
Two case studies. In ICAPS 2011 Scheduling and Planning
Applications woRKshop, 37–44.
Haslum, P. 2011. Computing genome edit distances using
domain-independent planning. In ICAPS 2011 Scheduling
and Planning Applications woRKshop, 45–51.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research 35:623–675.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011 (planner abstract). In IPC 2011 planner ab-
stracts, 50–54.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Brafman, R.; Geffner, H.; Hoffmann, J.; and Kautz, H., eds.,
Proceedings of the Twentieth International Conference on
Automated Planning and Scheduling (ICAPS 2010), 246–
249. AAAI Press.
Röger, G.; Pommerening, F.; and Seipp, J. 2014. Fast Down-
ward Stone Soup 2014. In Eighth International Planning
Competition (IPC-8): planner abstracts, 28–31.
Seipp, J.; Sievers, S.; Helmert, M.; and Hutter, F. 2015. Au-
tomatic configuration of sequential planning portfolios. In

Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence (AAAI 2015), 3364–3370. AAAI Press.
Seipp, J.; Braun, M.; and Garimort, J. 2014. Fast Down-
ward uniform portfolio. In Eighth International Planning
Competition (IPC-8): planner abstracts, 32.
Seipp, J.; Sievers, S.; and Hutter, F. 2014. Fast Down-
ward Cedalion. In Eighth International Planning Compe-
tition (IPC-8): planner abstracts, 17–27.
Streeter, M. J.; Golovin, D.; and Smith, S. F. 2007. Combin-
ing multiple heuristics online. In Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence (AAAI
2007), 1197–1203. AAAI Press.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Zilberstein, S.; Koehler, J.; and Koenig, S., eds.,
Proceedings of the Fourteenth International Conference on
Automated Planning and Scheduling (ICAPS 2004), 150–
159. AAAI Press.
Xie, F.; Müller, M.; Holte, R. C.; and Imai, T. 2014. Type-
based exploration with multiple search queues for satisficing
planning. In Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence (AAAI 2014). AAAI Press.


