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Abstract

Width-based search algorithms have recently emerged as a
simple yet effective approach to planning. Best-First Width
Search (BFWS) is one of the most successful satisficing
width-based algorithms, as it strikes a good balance between
an effective exploration based on a measure of state nov-
elty and the exploitation provided by traditional goal-directed
heuristics. Several conceptually interesting BFWS variants
have recently been shown to offer state-of-the-art perfor-
mance, including a polynomial-time BFWS planner which
is incomplete but fast and effective, and a black-box BFWS
planner that can plan efficiently with simulators, i.e. when the
transition function of the problem is represented as a black-
box function. In this paper, we describe six BFWS planners
involving these variations that we have entered into the 2018
International Planning Competition.

Introduction
Planning as heuristic search is one of the most success-
ful computational approaches to classical planning devel-
oped so far (Bonet and Geffner 2001; Hoffmann and Nebel
2001), dominating several of the past editions of the Inter-
national Planning Competition (IPC). The essential com-
ponent of this approach is the automatic derivation of an
heuristic function that informs the search from the declar-
ative representation of the problem in some modeling lan-
guage such as STRIPS or PDDL (Fikes and Nilsson 1971;
McDermott 2000). This is usually coupled with a suitable
search strategy and a number of search improvements such
as helpful actions, delayed evaluation and multiple search
queues (Hoffmann and Nebel 2001; Helmert 2006).

A recent and significant departure from this approach
are width-based search algorithms. Still framed within the
planning as search paradigm, width-based algorithms how-
ever do away with the reliance on heuristics and means-
ends analysis (Newell and Simon 1963), and use instead a
powerful exploration mechanism based on a structural, goal-
agnostic notion of state novelty, which roughly assigns value
to states based on how novel they are with respect to the
states already visited by the search strategy being employed
(Lipovetzky and Geffner 2012). The exploration mechanism
offered by the width-based approach can be combined with
traditional heuristics in greedy best-first-like search strate-
gies to produce state-of-the-art satisficing planning strate-

gies collectively called Best-First Width Search (BFWS)
(Lipovetzky and Geffner 2017a; Katz et al. 2017), but it also
has other interesting properties that go beyond performance.
First, state novelty measures seem to be a particularly effec-
tive pruning mechanism. Lipovetzky and Geffner (2017b)
have developed incomplete but polynomial BFWS variations
with a simple modification that consists on roughly pruning
from the search those nodes which are not novel enough.
The resulting algorithm solves more instances from previ-
ous competitions than IPC-winning, exponential-time plan-
ners such as LAMA or FF (Richter and Westphal 2010;
Hoffmann and Nebel 2001).

Second, width-based methods constitute a surprising de-
parture from previous planning research, as they do not re-
quire a declarative definition of the action model, an essen-
tial component of virtually all previous approaches, from
the first means-ends and partial-order planners (Newell and
Simon 1963; Tate 1977; Nilsson 1980) to the latest SAT,
OBDD, and heuristic search planners (Kautz and Selman
1996; Edelkamp and Kissmann 2009; Richter and West-
phal 2010; Rintanen 2012). Francès et al. (2017) show how
width-based methods are an effective means of dealing with
the standard IPC benchmarks even when no information on
the action structure is available to be used in the compu-
tation of e.g. heuristics or SAT models, that is, when the
transition function of the problem is given as a black box.
This is relevant, as there is a wide set of problems which
fit the classical planning model, but whose dynamics are
not easily represented in declarative languages, cf. the Atari
Learning Environment (Bellemare et al. 2013), the games of
the General Video Game competition (Perez-Liebana et al.
2016), Angry Birds (Renz 2015) and Minecraft (Johnson et
al. 2016), all of which expose action models through pro-
cedural, black-box interfaces that preclude the use of most
classical planners. At the same time, having effective plan-
ning algorithms that do not rely on a declarative represen-
tation of the action model greatly reduces the challenge of
modeling, as arbitrary, high-level language constructs such
as axioms or semantic attachments (Thiébaux et al. 2005;
Dornhege et al. 2009) can be seamlessly dealt with.

Width-based methods have also recently been extended
beyond classical planning to tackle finite horizon MDPs
(Geffner and Geffner 2015), partially observable problems
(MacNally et al. 2018) and problems with hybrid discrete



and continuous dynamics (Ramirez et al. 2018). We here fo-
cus on the width-based classical planners that we have sub-
mitted to this year’s International Planning Competition.

The remainder of this paper is organized as follows. We
first present the essential ideas of width-based search, then
briefly describe the Best-First Width Search (BFWS) frame-
work, and highlight two interesting possibilities of BFWS-
derived planners which are used in some of our submit-
ted planners: polynomial runtime guarantees which make
BFWS incomplete but still quite effective, and the ability
of planning effectively on black-box representations of the
transition functions. We conclude by briefly reviewing the
actual planners entered into the competition. Many details
have been omitted for the sake of brevity, but we provided
pointers to the relevant literature where necessary.

Width-Based Search
Width-based search algorithms are forward state-space
search algorithms that rely on the key notion of novelty of a
state (Lipovetzky and Geffner 2012). Assuming that a state
is a set of propositional atoms, as standard in STRIPS-based
classical planning, the novelty w(s) of a state s is the size
of the smallest set of atoms Q such that s is the first state
encountered in the search where Q ⊆ s. Thus, if s is the
first state on the search that contains a certain atom p, then
w(s) = 1. If no such atom exists, but s is the first state on
the search that contains a certain pair of atoms {p, q}, then
w(s) = 2, and so on. An important property of the novelty of
a state is that it is a search-dependent but goal-independent
measure whose computation requires only knowledge about
the structure of the state.

The simplest width-based algorithm is the parametric
IW(k), a standard breadth-first search where any newly-
generated state s with novelty w(s) > k is pruned (Lipovet-
zky and Geffner 2012). IW(k) converges to breadth-first
search as the value of k approaches the number n of atoms
in the problem, but its time and space complexity are ex-
ponential only in k, hence polynomial if we consider a
fixed value of k. Interestingly, IW(k) has been shown to
solve any instance of many of the standard benchmark do-
mains with k = 2, i.e. in quadratic time, provided that
the goal is a single atom (Lipovetzky and Geffner 2012;
Lipovetzky 2014). This is because such domains have a
small and bounded width ω that does not depend on the size
of the instance and such that IW(k) with k = ω can (opti-
mally) solve any of their instances.

When goals are however not restricted to single atoms but
can be arbitrary conjunctions, strategies more sophisticated
than IW(k) are necessary. Different width-based algorithms
have been proposed to address that challenge, such as Seri-
alized IW (SIW) (Lipovetzky and Geffner 2012), SIW+ or
DFS+ (Lipovetzky and Geffner 2014). The most success-
ful among these approaches, which we describe next, is the
generic search schema known as Best-First Width Search.

Best-First Width Search
Lipovetzky and Geffner (2017a) have recently shown that
state-of-the-art performance over the standard classical plan-

ning benchmarks can be achieved when the exploration af-
forded by structural measures of width is combined with the
exploitation offered by traditional heuristic search methods.
BFWS is a standard best-first search that uses an extended
definition of novelty of a search node given certain parti-
tioning functions as the main criterion to prioritize nodes
in the open list. The novelty w(s) of a state s given func-
tions h1, . . . , hn is defined as the size of the smallest set
of atoms Q such that s is the first state encountered in the
search where all atoms in Q are true at the same time, con-
sidering only those previous states s′ with equal hi-values,
i.e., such that hi(s) = hi(s

′) for i = 1, . . . , n. This novelty
measure is also written as w〈h1,...,hn〉(s).

The best-performing BFWS planner described in
(Lipovetzky and Geffner 2017a) is BFWS(f5), which uses
w = w〈#g,#r〉, where #g(s) counts how many of the
atomic goals of the problem are not true in s, and #r(s)
is a path-dependent approximation of progress towards
achieving a certain set R(s) of atoms which are considered
to be relevant to reach the problem goal from state s. A
complete description of the algorithm can be found in
(Lipovetzky and Geffner 2017a); for the sake of brevity, we
here simply note that different alternatives in defining R(s)
are possible; the one that works best in (Lipovetzky and
Geffner 2017a) is computed from a delete-free relaxed plan
computed from s (Hoffmann and Nebel 2001).

Polynomial BFWS
Best-First Width Search provides an alternative to the IW(k)
and Serialized IW(k) algorithms (Lipovetzky and Geffner
2012) which is complete, but this necessarily implies that
the polynomial-time nature of IW(k) is lost. Lipovetzky
and Geffner (2017b) present additional variations of BFWS
which have guaranteed polynomial runtime, and in spite of
being incomplete, can solve a surprising amount of the clas-
sical planning benchmarks from previous IPCs. The first
such variant is k-BFWS, which is equal to BFWS but prunes
from the search those generated states s with novelty w(s) >
k. The second variant, k-M -BFWS, relaxes that strict prun-
ing criterion by allowing for the expansion of at most M
states with novelty higher than k, provided that they are di-
rect descendants of some state s with novelty w(s) < k
(Lipovetzky and Geffner 2017b).

Black-Box BFWS
One of the properties of width-based algorithms is that the
computation of novelty they rely on only requires knowl-
edge about the structure of the state, not about the action
model of the problem. This has allowed the successful use
of this approach in simulated environments such as the Atari
Learning Environment (Bellemare et al. 2013), where a
declarative definition of the action model is not available or
would be much harder to obtain than a procedural, black-
box implementation of the transition function of the problem
(Lipovetzky et al. 2015; Shleyfman et al. 2016).

On this same line, Francès et al. (2017) present
BFWS(R), a generalization of the BFWS(f5) algorithm de-
scribed above which uses alternative strategies for comput-



ing the sets R(s) that do not require a declarative represen-
tation of the action model. The basic idea in most of these
strategies is to run a polynomial preprocessing phase where
the IW(1) (and, if necessary, IW(2)) algorithm is run from
the initial state of the problem to conduct an exploration of
the novelty-1 (and, eventually, novelty-2) polynomial sub-
space of the state space that allows us to identify which of
the problem atoms lie on some path that reaches at least
some of the atoms in the goal conjunction. The key assump-
tion behind this strategy is that the problem goal is expressed
as a conjunction of atoms, and that most goal atoms can
be individually reached by the polynomial IW(1) or IW(2)
algorithms,1 assumptions which many of the benchmarks
from past IPCs share.

Competition Planners
We here briefly describe the characteristics of the 6 different
width-based planners submitted to the competition. Table 1
summarizes the properties of each of the submitted planners
in terms of completeness, complexity bounds, and their abil-
ity to deal with simulators, i.e. black-box representations of
the transition function. Our two simulation-based planners,
FS-blind and FS-sim, use the PDDL action model of the
problem only at preprocessing, to (1) compile an efficient
black-box representation of the transition function based on
Fast Downward’s successor generator (Helmert 2006), and
(2) perform an ASP-based reachability analysis through the
Clingo ASP solver (Gebser et al. 2012). The fact that these
planners completely ignore the action model after this pre-
processing can be seen as an unnecessary handicap in the
context of the competition, but we are interested in observ-
ing the actual performance of this strategy, which has inter-
esting applications beyond PDDL-based planning. All plan-
ners are implemented mostly in C++, with some parsing and
preprocessing implemented in Python, and are built on top
of the LAPKT planning toolkit (Ramirez et al. 2015).

BFWS-preference This is the BFWS(f5) planner de-
scribed above (Lipovetzky and Geffner 2017a), with one dif-
ference for the satisficing track submission: once BFWS(f5)
finds a solution, the plan cost is given as an upper bound
to the weighted A∗ (WA∗) implementation used in LAMA
(Richter and Westphal 2010), which then runs to optimize
solution quality until the timeout is reached. The problem
given to WA∗ is preprocessed by h2 to reduce the number
of actions and minimize the search effort (Alcázar and Tor-
ralba 2015). This planner has been submitted to the agile and
satisficing tracks.

BFWS-polynomial This is the polynomial k-BFWS(f5)
(Lipovetzky and Geffner 2017b), which runs BFWS(f5) but
prunes those nodes whose novelty is higher than k. The
planner runs 1-BFWS first; if no solution is found, then a
sequence of 2-M -BFWS calls with M = 1, 2, 4, 8, 16, 32
follows, where M is a parameter that stands for how many

1Note that finding plans that reach each of the goals individually
is different than finding plans that reach all goals jointly.

children n′ of any node n with novelty w(n) ≤ 2 have them-
selves novelty w(n′) > 2 but are not pruned. To keep the
submission polynomial, no optimization step has been used
on the satisficing track. This planner has been submitted to
the agile and satisficing tracks.

Dual-BFWS Dual-BFWS (Lipovetzky and Geffner
2017a) uses the polynomial and incomplete 1-BFWS
search, pruning all nodes whose novelty is bigger than
1. If this incomplete search fails, a complete BFWS(f6)
search is run, where f6 = 〈w〈hL〉, help, hL, w〈hFF〉, hFF〉
combines novelty measures with the landmark-based hL

heuristic (Richter and Westphal 2010), helpful actions
and hFF (Hoffmann and Nebel 2001). This type of dual
architecture is present in early successful planners such as
FF. This planner has been submitted to the agile, satisficing
and cost-bounded tracks. The satisficing track submission
includes the same WA∗-based optimization as described for
the BFWS-preference planner, whereas the cost-bounded
track submission just uses the bound to prune solutions
while searching.

DFS+ This is the extension of SIW+ described in
(Lipovetzky and Geffner 2014), but instead of increasing the
bound of IW(k) until a new goal is reached or the prob-
lem is solved, when the bound is 2, we backtrack to the
last IW search and continue searching for other states that
achieve one more goal. DFS+ can be approximated as a
BFWS(f5) where the evaluation function is reversed as f5 =
〈#g, w〈#r,#g〉〉, i.e. preferring first states that achieve more
goals, and then breaking ties by novelty extended with the
goal and relax plan counters. DFS+ is polynomial, but the
number of nodes it expands depends on the number of states
that decrease the count #g of unachieved goal atoms within
each IW+(2) call, which is hard to estimate. This planner
has been submitted to the agile and satisficing tracks, with
no optimization step for the latter.

FS-blind FS-blind is the BFWS(R0) simulation-based
planner as described in (Francès et al. 2017). The planner
runs a Best-First Width Search where the set of relevant
atoms R(s) is always taken to be the empty set, which effec-
tively means that the only information about the goal that the
planner exploits is a simple goal-count heuristic that evalu-
ates how many atoms in the goal conjunction are satisfied in
each state. This planner has been submitted to the agile and
satisficing tracks.

FS-sim FS-sim is the BFWS(R∗G) simulation-based plan-
ner as described in (Francès et al. 2017), which is like FS-
blind above but exploits additional information about the
goal, inferred in an extra preprocessing step by running the
IW(1) and IW(2) algorithms from the initial state of the
problem (as described in the Simulation-Based BFWS sec-
tion above). This planner has been submitted to the agile
and satisficing tracks.



Planner Complete Polynomial Black-box

BFWS-preference x
BFWS-polynomial x
Dual-BFWS x
DFS+ x
FS-blind x x
FS-sim x x

Table 1: Properties of width-based planners submitted to IPC
2018.

Language Expressivity
All of the planners submitted to the competition support
universal quantification and conditional and universally-
quantified effects, but do not have full support for axioms.
The two BFWS(R)-based planners (FS-blind, FS-sim) are
implemented in the FS planner (Francès and Geffner 2015;
2016), which deals with problems specified in the Functional
STRIPS language (Geffner 2000), a superset of STRIPS
with support for function symbols. The planner additionally
supports a number of interesting extensions which inspired
the development of the BFWS(R) algorithms, such as black-
box specifications of the transition function, or of the proce-
dural denotation of certain fixed predicate and function sym-
bols, also referred to as semantic attachments (Dornhege et
al. 2009)

The rest of the submitted planners (BFWS-preference,
BFWS-polynomial, Dual-BFWS and DFS+) support con-
ditional and universally-quantified effects, as said, but their
use of the Fast Downward parser, which occasionally trans-
forms universal quantifiers into axioms, make these planners
fail in these rare cases, since support for axioms is not yet
implemented.

Summary
We have presented the six satisficing classical planners
submitted to the 2018 International Planning Competition.
These six planners explore different conceptually interesting
variants of best-first width search: some are complete, some
are incomplete but polynomial, and some are black-box pro-
cedures that do not require any declarative representation of
actions in terms of preconditions and effects.

Acknowledgments
M. Ramı́rez and N. Lipovetzky have been partially funded
by DST.

References
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S. Thiébaux, J. Hoffmann, and B. Nebel. In defense of pddl
axioms. Artif. Intell., 168(1-2):38–69, 2005.


